pytorch resnet 一维
时间: 2023-08-20 12:12:14 浏览: 126
ResNet是一种卷积神经网络,它通过引入残差学习解决了网络退化的问题。当网络深度增加时,传统的网络准确度会饱和甚至下降,而ResNet通过shortcut的方法让信息跨层传播,从而解决了这个问题。具体来说,ResNet中的shortcut连接允许被跨越的层拟合的是两层之间的残差。当残差为0时,shortcut连接就是恒等映射;当残差不为0时,就能在恒等映射的基础上补充学习残差。[1]
在PyTorch中实现ResNet,可以使用ResidualBlock类来定义残差块。这个类包含了两个卷积层和两个批归一化层,以及一个可选的下采样层。在前向传播过程中,输入通过卷积层和批归一化层后,与残差相加,然后再经过ReLU激活函数。[2]
为了进一步优化ResNet的性能,可以在网络中引入bottleneck结构。这个结构可以减少参数量和计算量,但在较浅的网络中可能会增加计算耗时。因此,bottleneck结构更适合用在更深的网络中。此外,对于ResNet的预处理和图像变换,如果过于简单,可能会导致准确率过低。[3]
总结来说,PyTorch中的ResNet是一种用于图像分类任务的卷积神经网络,通过残差学习和shortcut连接解决了网络退化的问题。可以使用ResidualBlock类来定义残差块,并可以引入bottleneck结构来进一步优化性能。在使用ResNet时,需要注意适当的预处理和图像变换,以提高准确率。
相关问题
pytorch实现二维resnet18
以下是PyTorch实现二维ResNet18的示例代码:
```
import torch
import torch.nn as nn
class BasicBlock(nn.Module):
def __init__(self, in_planes, out_planes, stride=1):
super(BasicBlock, self).__init__()
self.conv1 = nn.Conv2d(in_planes, out_planes, kernel_size=3, stride=stride, padding=1, bias=False)
self.bn1 = nn.BatchNorm2d(out_planes)
self.conv2 = nn.Conv2d(out_planes, out_planes, kernel_size=3, stride=1, padding=1, bias=False)
self.bn2 = nn.BatchNorm2d(out_planes)
self.shortcut = nn.Sequential()
if stride != 1 or in_planes != out_planes:
self.shortcut = nn.Sequential(
nn.Conv2d(in_planes, out_planes, kernel_size=1, stride=stride, bias=False),
nn.BatchNorm2d(out_planes)
)
def forward(self, x):
out = nn.functional.relu(self.bn1(self.conv1(x)))
out = self.bn2(self.conv2(out))
out += self.shortcut(x)
out = nn.functional.relu(out)
return out
class ResNet(nn.Module):
def __init__(self, block, num_blocks, num_classes=10):
super(ResNet, self).__init__()
self.in_planes = 64
self.conv1 = nn.Conv2d(3, 64, kernel_size=3, stride=1, padding=1, bias=False)
self.bn1 = nn.BatchNorm2d(64)
self.layer1 = self._make_layer(block, 64, num_blocks[0], stride=1)
self.layer2 = self._make_layer(block, 128, num_blocks[1], stride=2)
self.layer3 = self._make_layer(block, 256, num_blocks[2], stride=2)
self.layer4 = self._make_layer(block, 512, num_blocks[3], stride=2)
self.linear = nn.Linear(512, num_classes)
def _make_layer(self, block, planes, num_blocks, stride):
strides = [stride] + [1]*(num_blocks-1)
layers = []
for stride in strides:
layers.append(block(self.in_planes, planes, stride))
self.in_planes = planes
return nn.Sequential(*layers)
def forward(self, x):
out = nn.functional.relu(self.bn1(self.conv1(x)))
out = self.layer1(out)
out = self.layer2(out)
out = self.layer3(out)
out = self.layer4(out)
out = nn.functional.avg_pool2d(out, 4)
out = out.view(out.size(0), -1)
out = self.linear(out)
return out
def ResNet18():
return ResNet(BasicBlock, [2,2,2,2])
```
这个代码实现了一个简单的二维ResNet18,由基本块(BasicBlock)组成。块中包含了两个卷积层和一个残差连接(shortcut),并且使用批量归一化(BatchNorm)来提高模型的稳定性。整个ResNet18模型由四个块(layer)组成,其中每个块包含了若干个基本块。在最后一个块后面添加了一个平均池化层和全连接层。
pytorch 实现 ResNet50 实现特征提取且最后输出为1*32720的一维向量
可以使用预训练的 ResNet50 模型,并将其最后一层的全连接层去掉,这样就可以得到一个特征提取器。然后,你可以将输入数据输入到这个特征提取器中,得到一个形状为 [batch_size, 2048, 1, 1] 的张量。接下来,你需要将这个张量展平成一个形状为 [batch_size, 2048] 的张量,然后再将其传递到一个全连接层中,输出一个形状为 [batch_size, 32720] 的张量。具体的代码实现如下:
```python
import torch
import torch.nn as nn
import torchvision.models as models
class ResNet50(nn.Module):
def __init__(self):
super(ResNet50, self).__init__()
self.resnet50 = models.resnet50(pretrained=True)
self.resnet50.fc = nn.Identity() # 去掉最后一层全连接层
self.fc = nn.Linear(2048, 32720)
def forward(self, x):
x = self.resnet50(x)
x = x.view(x.size(0), -1) # 展平特征张量
x = self.fc(x)
return x
```
这里的 `ResNet50` 类继承自 `nn.Module`,并包含了一个预训练的 ResNet50 模型和一个全连接层。在前向传播中,我们首先将输入数据输入到 ResNet50 模型中,得到一个形状为 [batch_size, 2048, 1, 1] 的张量,然后将其展平成一个形状为 [batch_size, 2048] 的张量,并将其传递到全连接层中,得到一个形状为 [batch_size, 32720] 的输出张量。
阅读全文