用pytorch写一个一维残差卷积神经网络代码
时间: 2023-04-01 08:01:42 浏览: 149
pytorch卷积神经网络代码教学
以下是一个简单的一维残差卷积神经网络的 PyTorch 代码示例:
```python
import torch
import torch.nn as nn
class ResNet1D(nn.Module):
def __init__(self, in_channels, out_channels, kernel_size, stride, padding):
super(ResNet1D, self).__init__()
self.conv1 = nn.Conv1d(in_channels, out_channels, kernel_size, stride, padding)
self.bn1 = nn.BatchNorm1d(out_channels)
self.relu = nn.ReLU(inplace=True)
self.conv2 = nn.Conv1d(out_channels, out_channels, kernel_size, stride, padding)
self.bn2 = nn.BatchNorm1d(out_channels)
self.stride = stride
self.in_channels = in_channels
self.out_channels = out_channels
self.padding = padding
def forward(self, x):
residual = x
out = self.conv1(x)
out = self.bn1(out)
out = self.relu(out)
out = self.conv2(out)
out = self.bn2(out)
if self.stride != 1 or self.in_channels != self.out_channels:
residual = nn.functional.conv1d(x, self.out_channels, kernel_size=1, stride=self.stride, padding=)
residual = nn.BatchNorm1d(self.out_channels)
out += residual
out = self.relu(out)
return out
```
这是一个基本的 ResNet1D 类,它包含两个卷积层和一个残差块。在前向传递期间,输入通过第一个卷积层,然后通过批量标准化和 ReLU 激活函数。然后,输出通过第二个卷积层和批量标准化。如果输入和输出通道数不同,或者步幅不为 1,则使用 1x1 卷积层和批量标准化来调整残差。最后,输出通过 ReLU 激活函数并返回。
阅读全文