Resnet代码一维卷积
时间: 2024-03-30 08:28:55 浏览: 258
对于ResNet的代码中的一维卷积,可以使用PyTorch的nn.Conv1d模块来实现。下面是一个示例代码,展示了如何在ResNet的基本块中使用一维卷积:
```python
import torch
import torch.nn as nn
class BasicBlock(nn.Module):
def __init__(self, in_channels, out_channels, stride=1):
super(BasicBlock, self).__init__()
self.conv1 = nn.Conv1d(in_channels, out_channels, kernel_size=3, stride=stride, padding=1, bias=False)
self.bn1 = nn.BatchNorm1d(out_channels)
self.relu = nn.ReLU(inplace=True)
self.conv2 = nn.Conv1d(out_channels, out_channels, kernel_size=3, stride=1, padding=1, bias=False)
self.bn2 = nn.BatchNorm1d(out_channels)
self.downsample = None
if stride != 1 or in_channels != out_channels:
self.downsample = nn.Sequential(
nn.Conv1d(in_channels, out_channels, kernel_size=1, stride=stride, bias=False),
nn.BatchNorm1d(out_channels)
)
def forward(self, x):
identity = x
out = self.conv1(x)
out = self.bn1(out)
out = self.relu(out)
out = self.conv2(out)
out = self.bn2(out)
if self.downsample is not None:
identity = self.downsample(x)
out += identity
out = self.relu(out)
return out
```
这个示例代码展示了如何在ResNet的基本块中使用一维卷积。基本块包含两个一维卷积层和批归一化层,以及一个跳跃连接来处理维度不匹配的情况。
阅读全文