三输入特征三输出的一维卷积神经网络,使用ResNet网络的基于pytorch的代码示例
时间: 2023-06-02 12:03:04 浏览: 143
Resnet50卷积神经网络训练MNIST手写数字图像分类 Pytorch训练代码
5星 · 资源好评率100%
以下是基于PyTorch实现的三输入特征三输出的一维卷积神经网络,使用ResNet网络的代码示例。
```python
import torch
import torch.nn as nn
import torch.nn.functional as F
class ResNetBlock(nn.Module):
def __init__(self, in_channels, out_channels, stride=1, downsample=None):
super(ResNetBlock, self).__init__()
self.conv1 = nn.Conv1d(in_channels, out_channels, kernel_size=3, stride=stride, padding=1, bias=False)
self.bn1 = nn.BatchNorm1d(out_channels)
self.conv2 = nn.Conv1d(out_channels, out_channels, kernel_size=3, stride=1, padding=1, bias=False)
self.bn2 = nn.BatchNorm1d(out_channels)
self.relu = nn.ReLU(inplace=True)
self.downsample = downsample
def forward(self, x):
identity = x
out = self.conv1(x)
out = self.bn1(out)
out = self.relu(out)
out = self.conv2(out)
out = self.bn2(out)
if self.downsample is not None:
identity = self.downsample(x)
out += identity
out = self.relu(out)
return out
class ResNet(nn.Module):
def __init__(self, in_channels, out_channels, num_blocks=2):
super(ResNet, self).__init__()
self.in_channels = in_channels
self.out_channels = out_channels
self.conv1 = nn.Conv1d(in_channels, 64, kernel_size=7, stride=2, padding=3, bias=False)
self.bn1 = nn.BatchNorm1d(64)
self.relu = nn.ReLU(inplace=True)
self.maxpool = nn.MaxPool1d(kernel_size=3, stride=2, padding=1)
self.layer1 = self._make_layer(64, 64, num_blocks)
self.layer2 = self._make_layer(64, 128, num_blocks, stride=2)
self.layer3 = self._make_layer(128, 256, num_blocks, stride=2)
self.avgpool = nn.AdaptiveAvgPool1d(1)
self.fc1 = nn.Linear(256, 128)
self.fc2 = nn.Linear(128, out_channels)
def _make_layer(self, in_channels, out_channels, num_blocks, stride=1):
downsample = None
if stride != 1 or in_channels != out_channels:
downsample = nn.Sequential(
nn.Conv1d(in_channels, out_channels, kernel_size=1, stride=stride, bias=False),
nn.BatchNorm1d(out_channels),
)
layers = [ResNetBlock(in_channels, out_channels, stride, downsample)]
for _ in range(1, num_blocks):
layers.append(ResNetBlock(out_channels, out_channels))
return nn.Sequential(*layers)
def forward(self, x1, x2, x3):
x = torch.cat((x1.unsqueeze(1), x2.unsqueeze(1), x3.unsqueeze(1)), dim=1)
x = self.conv1(x)
x = self.bn1(x)
x = self.relu(x)
x = self.maxpool(x)
x = self.layer1(x)
x = self.layer2(x)
x = self.layer3(x)
x = self.avgpool(x)
x = x.view(x.size(0), -1)
x = self.fc1(x)
x = self.relu(x)
x = self.fc2(x)
return x
```
该代码实现了一个ResNet网络,其中包含了ResNetBlock和ResNet两个类。ResNetBlock是ResNet的基本模块,ResNet是整个网络。
在ResNet中,我们首先对输入的三个特征进行拼接,然后进入卷积层进行特征提取。之后,我们通过多个ResNetBlock来进行深度的特征提取。最后,我们通过全局平均池化将特征降维,然后经过两个全连接层获得最终的输出。
在_ResNetBlock_中,我们定义了两个卷积层,每个卷积层后面都跟着一个BatchNorm1d和ReLU激活函数。在_ResNet_中,我们定义了一个_make_layer方法来生成多个ResNetBlock。在这个方法中,我们也定义了一个downsample层,用于将输入的特征进行下采样,使得特征维度和输出维度相同。最后,我们将三个特征拼接成一个特征输入到ResNet中进行特征提取。
阅读全文