用Pytorch实现一个一维残差网络
时间: 2023-02-23 20:20:31 浏览: 120
PyTorch实施残差密集网络以实现图像超分辨率 CVPR 2018
5星 · 资源好评率100%
实现一个一维残差网络在PyTorch中非常简单。你可以定义一个继承自`nn.Module`类的自定义模型类,并在其中定义一维残差块,然后将多个残差块通过堆叠在一起来构建整个模型。
下面是一个示例代码:
```
import torch
import torch.nn as nn
class ResidualBlock(nn.Module):
def __init__(self, in_features):
super(ResidualBlock, self).__init__()
self.conv1 = nn.Conv1d(in_features, in_features, kernel_size=3, stride=1, padding=1)
self.bn1 = nn.BatchNorm1d(in_features)
self.relu = nn.ReLU()
self.conv2 = nn.Conv1d(in_features, in_features, kernel_size=3, stride=1, padding=1)
self.bn2 = nn.BatchNorm1d(in_features)
def forward(self, x):
out = self.conv1(x)
out = self.bn1(out)
out = self.relu(out)
out = self.conv2(out)
out = self.bn2(out)
out += x
out = self.relu(out)
return out
class ResNet(nn.Module):
def __init__(self, num_classes, input_size):
super(ResNet, self).__init__()
self.conv = nn.Conv1d(input_size, 64, kernel_size=7, stride=2, padding=3)
self.bn = nn.BatchNorm1d(64)
self.relu = nn.ReLU()
self.pool = nn.MaxPool1d(kernel_size=3, stride=2, padding=1)
self.layer1 = self._make_layer(64, 128, 3)
self.layer2 = self._make_layer(128, 256, 4)
self.layer3 = self._make_layer(256, 512, 6)
self.layer4 = self._make_layer(512, 512, 3)
self.avg_pool = nn.AdaptiveAvgPool1d(1)
self.fc = nn.Linear(512, num_classes)
def _make_layer(self, in_features, out_features, num_blocks):
layers = []
for i in range(num_blocks):
layers.append(ResidualBlock(in_features))
in_features = out_features
阅读全文