用pytorch写一个一维残差神经网络代码,并添加ECA注意力机制,最好是resnet1d18
时间: 2023-04-01 13:02:00 浏览: 462
好的,我可以回答这个问题。以下是使用 PyTorch 编写一维残差神经网络代码并添加 ECA 注意力机制的示例代码:
```python
import torch
import torch.nn as nn
class ECA(nn.Module):
def __init__(self, channels, gamma=2, b=1):
super(ECA, self).__init__()
self.avg_pool = nn.AdaptiveAvgPool1d(1)
self.conv = nn.Conv1d(1, 1, kernel_size=3, padding=1, bias=False)
self.sigmoid = nn.Sigmoid()
self.gamma = gamma
self.b = b
def forward(self, x):
y = self.avg_pool(x)
y = self.conv(y)
y = self.sigmoid(self.gamma * y + self.b)
return x * y
class ResNetBlock(nn.Module):
def __init__(self, in_channels, out_channels, stride=1, downsample=None):
super(ResNetBlock, self).__init__()
self.conv1 = nn.Conv1d(in_channels, out_channels, kernel_size=3, stride=stride, padding=1, bias=False)
self.bn1 = nn.BatchNorm1d(out_channels)
self.relu = nn.ReLU(inplace=True)
self.conv2 = nn.Conv1d(out_channels, out_channels, kernel_size=3, padding=1, bias=False)
self.bn2 = nn.BatchNorm1d(out_channels)
self.eca = ECA(out_channels)
self.downsample = downsample
def forward(self, x):
identity = x
out = self.conv1(x)
out = self.bn1(out)
out = self.relu(out)
out = self.conv2(out)
out = self.bn2(out)
if self.downsample is not None:
identity = self.downsample(x)
out += identity
out = self.eca(out)
out = self.relu(out)
return out
class ResNet1D(nn.Module):
def __init__(self, block, layers, num_classes=100):
super(ResNet1D, self).__init__()
self.in_channels = 64
self.conv1 = nn.Conv1d(1, 64, kernel_size=7, stride=2, padding=3, bias=False)
self.bn1 = nn.BatchNorm1d(64)
self.relu = nn.ReLU(inplace=True)
self.maxpool = nn.MaxPool1d(kernel_size=3, stride=2, padding=1)
self.layer1 = self._make_layer(block, 64, layers[])
self.layer2 = self._make_layer(block, 128, layers[1], stride=2)
self.layer3 = self._make_layer(block, 256, layers[2], stride=2)
self.layer4 = self._make_layer(block, 512, layers[3], stride=2)
self.avgpool = nn.AdaptiveAvgPool1d(1)
self.fc = nn.Linear(512, num_classes)
def _make_layer(self, block, out_channels, blocks, stride=1):
downsample = None
if stride != 1 or self.in_channels != out_channels:
downsample = nn.Sequential(
nn.Conv1d(self.in_channels, out_channels, kernel_size=1, stride=stride, bias=False),
nn.BatchNorm1d(out_channels)
)
layers = []
layers.append(block(self.in_channels, out_channels, stride, downsample))
self.in_channels = out_channels
for i in range(1, blocks):
layers.append(block(out_channels, out_channels))
return nn.Sequential(*layers)
def forward(self, x):
x = self.conv1(x)
x = self.bn1(x)
x = self.relu(x)
x = self.maxpool(x)
x = self.layer1(x)
x = self.layer2(x)
x = self.layer3(x)
x = self.layer4(x)
x = self.avgpool(x)
x = x.view(x.size(), -1)
x = self.fc(x)
return x
def resnet1d18():
return ResNet1D(ResNetBlock, [2, 2, 2, 2])
```
这是一个基于 ResNet 的一维残差神经网络,其中每个残差块都添加了 ECA 注意力机制。您可以使用 `resnet1d18()` 函数来创建一个 ResNet1D-18 模型。
阅读全文