resnet代码实现
时间: 2023-08-29 20:07:32 浏览: 52
ResNet(残差网络)是一种深度神经网络的结构,它通过残差块(Residual block)的堆叠来训练非常深的网络。下面是使用PyTorch实现ResNet18的代码示例:
```python
import torch.nn as nn
import torch.nn.functional as F
class ResidualBlock(nn.Module):
def __init__(self, in_channels, out_channels, stride=1):
super(ResidualBlock, self).__init__()
self.conv1 = nn.Conv2d(in_channels, out_channels, kernel_size=3, stride=stride, padding=1, bias=False)
self.bn1 = nn.BatchNorm2d(out_channels)
self.conv2 = nn.Conv2d(out_channels, out_channels, kernel_size=3, stride=1, padding=1, bias=False)
self.bn2 = nn.BatchNorm2d(out_channels)
self.shortcut = nn.Sequential()
if stride != 1 or in_channels != out_channels:
self.shortcut = nn.Sequential(
nn.Conv2d(in_channels, out_channels, kernel_size=1, stride=stride, bias=False),
nn.BatchNorm2d(out_channels)
)
def forward(self, x):
residual = x
out = F.relu(self.bn1(self.conv1(x)))
out = self.bn2(self.conv2(out))
out += self.shortcut(residual)
out = F.relu(out)
return out
class ResNet(nn.Module):
def __init__(self, block, num_blocks, num_classes=10):
super(ResNet, self).__init__()
self.in_channels = 64
self.conv1 = nn.Conv2d(3, 64, kernel_size=3, stride=1, padding=1, bias=False)
self.bn1 = nn.BatchNorm2d(64)
self.layer1 = self.make_layer(block, 64, num_blocks[0], stride=1)
self.layer2 = self.make_layer(block, 128, num_blocks[1], stride=2)
self.layer3 = self.make_layer(block, 256, num_blocks[2], stride=2)
self.layer4 = self.make_layer(block, 512, num_blocks[3], stride=2)
self.avg_pool = nn.AdaptiveAvgPool2d((1, 1))
self.fc = nn.Linear(512, num_classes)
def make_layer(self, block, out_channels, num_blocks, stride):
strides = [stride] + [1] * (num_blocks - 1)
layers = []
for stride in strides:
layers.append(block(self.in_channels, out_channels, stride))
self.in_channels = out_channels
return nn.Sequential(*layers)
def forward(self, x):
out = F.relu(self.bn1(self.conv1(x)))
out = self.layer1(out)
out = self.layer2(out)
out = self.layer3(out)
out = self.layer4(out)
out = self.avg_pool(out)
out = out.view(out.size(0), -1)
out = self.fc(out)
return out
def resnet18():
return ResNet(ResidualBlock, [2, 2, 2, 2])
```
在上面的代码中,我们首先定义了残差块`ResidualBlock`,然后定义了主要的ResNet模型`ResNet`。需要注意的是,`ResNet`中包含了4个残差块的堆叠,每个残差块中又包含了2个卷积层,因此我们需要定义一个用于生成残差块的函数`make_layer`。最后,我们定义了一个`resnet18`函数,用于生成ResNet18模型。
阅读全文