ResNet的代码实现
时间: 2024-10-16 22:01:40 浏览: 24
ResNet(残差网络)是一种深度卷积神经网络架构,特别设计来解决深度学习中训练深层模型时遇到的梯度消失问题。它的核心思想是在网络中引入了跨层连接(residual connection),使得信息可以直接从输入传递到更深的层次,简化了网络的学习过程。
在Python的Keras库中实现ResNet的一个基本示例如下:
```python
from keras.layers import Conv2D, MaxPooling2D, Input, Add, Flatten, Dense
from keras.models import Model
def residual_block(x, filters, strides=1):
shortcut = x
# 卷积层
x = Conv2D(filters=filters, kernel_size=3, padding='same', strides=strides)(x)
x = BatchNormalization()(x)
x = Activation('relu')(x)
# 再次卷积
x = Conv2D(filters=filters, kernel_size=3, padding='same')(x)
x = BatchNormalization()(x)
# 加上跳跃连接
x = Add()([x, shortcut])
x = Activation('relu')(x)
return x
# 创建输入层
inputs = Input(shape=(height, width, channels))
# 拼接基础块和残差块
x = Conv2D(64, kernel_size=7, strides=2, padding='same')(inputs)
x = MaxPooling2D(pool_size=3, strides=2, padding='same')(x)
x = residual_block(x, 64) # 第一个残差块
# 构建剩余的残差块
num_blocks_per_stage = [3, 4, 6, 3]
for block_idx in range(len(num_blocks_per_stage)):
for _ in range(num_blocks_per_stage[block_idx]):
x = residual_block(x, 64 * (2 ** block_idx), strides=2 if block_idx == 0 else 1)
# 输出层
x = AveragePooling2D(pool_size=7)(x)
x = Flatten()(x)
outputs = Dense(num_classes, activation='softmax')(x)
# 定义完整的ResNet模型
model = Model(inputs=inputs, outputs=outputs)
```
阅读全文