python实现对标准化图像IM进行离散傅立叶变换,得到离散傅立叶变换矩阵FIM
时间: 2023-07-11 11:08:39 浏览: 179
可以使用NumPy库来实现对标准化图像IM进行离散傅立叶变换,并得到离散傅立叶变换矩阵FIM。具体步骤如下:
1. 导入NumPy库
```
import numpy as np
```
2. 读取标准化图像IM并将其转换为灰度图像
```
im = cv2.imread('IM.jpg', cv2.IMREAD_GRAYSCALE)
```
3. 对图像IM进行离散傅立叶变换
```
fim = np.fft.fft2(im)
```
4. 对离散傅立叶变换矩阵FIM进行中心化
```
fim = np.fft.fftshift(fim)
```
这样就可以得到离散傅立叶变换矩阵FIM了。
相关问题
2.对标准化图像IM进行离散傅立叶变换,得到离散傅立叶变换矩阵FIM;
好的,以下是使用Python和NumPy库对标准化图像进行离散傅立叶变换,得到离散傅立叶变换矩阵的代码示例:
```python
import cv2
import numpy as np
# 读取原始图像
img = cv2.imread('image.jpg')
# 将原始图像转换为灰度图像
gray_img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
# 将灰度图像的大小调整为128*128
resized_img = cv2.resize(gray_img, (128, 128))
# 将像素值标准化为0到1之间的浮点数
normalized_img = resized_img / 255.0
# 对标准化图像进行离散傅立叶变换
FIM = np.fft.fft2(normalized_img)
# 显示处理后的图像
cv2.imshow('result', np.abs(FIM))
cv2.waitKey(0)
cv2.destroyAllWindows()
```
请注意,np.abs()函数用于获取离散傅立叶变换矩阵的模值。如果您想要查看实部和虚部,请使用np.real()和np.imag()函数。
python实现:对标准化图像IM进行离散傅立叶变换,得到离散傅立叶变换矩阵FIM,将FIM输入PCA+SVM的人脸识别程序中进行人脸识别分类预测
以下是Python实现对标准化图像IM进行离散傅立叶变换、PCA和SVM的完整代码:
```python
import numpy as np
import cv2
from sklearn.decomposition import PCA
from sklearn.svm import SVC
def DFT(image):
# 对图片进行离散傅立叶变换
f = np.fft.fft2(image)
fshift = np.fft.fftshift(f)
return fshift
def get_FIM(image):
# 得到离散傅立叶变换矩阵FIM
fim = DFT(image)
fim = np.abs(fim)
fim = np.log(fim + 1)
return fim
def load_data(data_dir):
# 加载数据集,返回图像和标签
images = []
labels = []
for label in os.listdir(data_dir):
for image_file in os.listdir(os.path.join(data_dir, label)):
image = cv2.imread(os.path.join(data_dir, label, image_file), cv2.IMREAD_GRAYSCALE)
fim = get_FIM(image) # 对图像进行离散傅立叶变换
images.append(fim.flatten())
labels.append(int(label))
return np.array(images), np.array(labels)
def pca_svm(X_train, y_train, X_test, y_test):
# PCA+SVM人脸识别分类预测
pca = PCA(n_components=100) # 选择100个主成分
pca.fit(X_train)
X_train_pca = pca.transform(X_train)
X_test_pca = pca.transform(X_test)
clf = SVC(kernel='rbf', C=100, gamma=0.001)
clf.fit(X_train_pca, y_train)
y_pred = clf.predict(X_test_pca)
accuracy = np.mean(y_pred == y_test) * 100
return accuracy
if __name__ == '__main__':
data_dir = 'path/to/your/data' # 数据集文件夹路径
images, labels = load_data(data_dir)
n_samples = len(labels)
X_train, y_train = images[:int(0.8 * n_samples)], labels[:int(0.8 * n_samples)] # 划分训练集
X_test, y_test = images[int(0.8 * n_samples):], labels[int(0.8 * n_samples):] # 划分测试集
accuracy = pca_svm(X_train, y_train, X_test, y_test)
print('Accuracy:', accuracy)
```
在该代码中,`DFT`函数对传入的图片进行离散傅立叶变换,`get_FIM`函数得到离散傅立叶变换矩阵`FIM`,`load_data`函数加载数据集并对每张图像进行离散傅立叶变换后展平为一维向量,`pca_svm`函数对训练集进行PCA降维后使用SVM分类器进行人脸识别预测。最后,可以通过调用`pca_svm`函数得到分类准确率。
阅读全文