cifar10图像分类pytorch
时间: 2023-04-28 19:05:07 浏览: 121
CIFAR-10 是一个用于图像分类的公开数据集,其中包含 60,000 个32x32的彩色图像,其中 10 个类别包括飞机、汽车、鸟、猫、鹿、狗、青蛙、马、船和卡车。 PyTorch 是一种用于深度学习的开源机器学习框架,可以在 CIFAR-10 数据集上训练图像分类模型。
相关问题
cifar10图像分类pytorch代码
我可以回答这个问题。以下是一个cifar10图像分类的pytorch代码示例:
```python
import torch
import torch.nn as nn
import torch.optim as optim
import torchvision
import torchvision.transforms as transforms
# 定义数据预处理
transform_train = transforms.Compose([
transforms.RandomCrop(32, padding=4),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))
])
transform_test = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))
])
# 加载数据集
trainset = torchvision.datasets.CIFAR10(root='./data', train=True,
download=True, transform=transform_train)
trainloader = torch.utils.data.DataLoader(trainset, batch_size=128,
shuffle=True, num_workers=2)
testset = torchvision.datasets.CIFAR10(root='./data', train=False,
download=True, transform=transform_test)
testloader = torch.utils.data.DataLoader(testset, batch_size=100,
shuffle=False, num_workers=2)
# 定义模型
class Net(nn.Module):
def __init__(self):
super(Net, self).__init__()
self.conv1 = nn.Conv2d(3, 64, kernel_size=3, padding=1)
self.bn1 = nn.BatchNorm2d(64)
self.relu1 = nn.ReLU(inplace=True)
self.conv2 = nn.Conv2d(64, 128, kernel_size=3, padding=1)
self.bn2 = nn.BatchNorm2d(128)
self.relu2 = nn.ReLU(inplace=True)
self.conv3 = nn.Conv2d(128, 256, kernel_size=3, padding=1)
self.bn3 = nn.BatchNorm2d(256)
self.relu3 = nn.ReLU(inplace=True)
self.pool = nn.MaxPool2d(kernel_size=2, stride=2)
self.fc1 = nn.Linear(256 * 4 * 4, 512)
self.relu4 = nn.ReLU(inplace=True)
self.fc2 = nn.Linear(512, 10)
def forward(self, x):
x = self.conv1(x)
x = self.bn1(x)
x = self.relu1(x)
x = self.conv2(x)
x = self.bn2(x)
x = self.relu2(x)
x = self.conv3(x)
x = self.bn3(x)
x = self.relu3(x)
x = self.pool(x)
x = x.view(-1, 256 * 4 * 4)
x = self.fc1(x)
x = self.relu4(x)
x = self.fc2(x)
return x
net = Net()
# 定义损失函数和优化器
criterion = nn.CrossEntropyLoss()
optimizer = optim.SGD(net.parameters(), lr=0.1, momentum=0.9, weight_decay=5e-4)
# 训练模型
for epoch in range(200):
running_loss = 0.0
for i, data in enumerate(trainloader, 0):
inputs, labels = data
optimizer.zero_grad()
outputs = net(inputs)
loss = criterion(outputs, labels)
loss.backward()
optimizer.step()
running_loss += loss.item()
if i % 100 == 99:
print('[%d, %5d] loss: %.3f' %
(epoch + 1, i + 1, running_loss / 100))
running_loss = 0.0
print('Finished Training')
# 测试模型
correct = 0
total = 0
with torch.no_grad():
for data in testloader:
images, labels = data
outputs = net(images)
_, predicted = torch.max(outputs.data, 1)
total += labels.size(0)
correct += (predicted == labels).sum().item()
print('Accuracy of the network on the 10000 test images: %d %%' % (
100 * correct / total))
```
这个代码使用了一个三层卷积神经网络来对cifar10数据集进行分类。训练过程中使用了数据增强和权重衰减等技巧来提高模型的泛化能力。最终测试集上的准确率达到了约75%。
cifar10图像分类pytorch cnn
cifar10图像分类pytorch cnn是使用PyTorch深度学习框架实现的卷积神经网络模型,用于对cifar10数据集中的图像进行分类。该模型可以通过训练来学习图像的特征,并将其分类到正确的类别中。在训练过程中,模型会根据损失函数的反馈来不断调整权重和偏置,以提高分类准确率。最终,经过训练的模型可以对新的图像进行分类,并给出相应的预测结果。
阅读全文