cifar100图像分类pytorch详细步骤和代码
时间: 2023-05-17 19:05:25 浏览: 110
非常感谢您的提问。以下是cifar100图像分类的pytorch详细步骤和代码:
1. 导入必要的库和数据集
```python
import torch
import torch.nn as nn
import torch.optim as optim
import torchvision
import torchvision.transforms as transforms
transform_train = transforms.Compose([
transforms.RandomCrop(32, padding=4),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))
])
transform_test = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))
])
trainset = torchvision.datasets.CIFAR100(root='./data', train=True,
download=True, transform=transform_train)
trainloader = torch.utils.data.DataLoader(trainset, batch_size=128,
shuffle=True, num_workers=2)
testset = torchvision.datasets.CIFAR100(root='./data', train=False,
download=True, transform=transform_test)
testloader = torch.utils.data.DataLoader(testset, batch_size=100,
shuffle=False, num_workers=2)
```
2. 定义模型
```python
class Net(nn.Module):
def __init__(self):
super(Net, self).__init__()
self.conv1 = nn.Conv2d(3, 64, kernel_size=3, padding=1)
self.bn1 = nn.BatchNorm2d(64)
self.conv2 = nn.Conv2d(64, 128, kernel_size=3, padding=1)
self.bn2 = nn.BatchNorm2d(128)
self.conv3 = nn.Conv2d(128, 256, kernel_size=3, padding=1)
self.bn3 = nn.BatchNorm2d(256)
self.conv4 = nn.Conv2d(256, 512, kernel_size=3, padding=1)
self.bn4 = nn.BatchNorm2d(512)
self.pool = nn.MaxPool2d(2, 2)
self.fc1 = nn.Linear(512 * 4 * 4, 1024)
self.fc2 = nn.Linear(1024, 512)
self.fc3 = nn.Linear(512, 100)
def forward(self, x):
x = self.pool(nn.functional.relu(self.bn1(self.conv1(x))))
x = self.pool(nn.functional.relu(self.bn2(self.conv2(x))))
x = self.pool(nn.functional.relu(self.bn3(self.conv3(x))))
x = self.pool(nn.functional.relu(self.bn4(self.conv4(x))))
x = x.view(-1, 512 * 4 * 4)
x = nn.functional.relu(self.fc1(x))
x = nn.functional.relu(self.fc2(x))
x = self.fc3(x)
return x
net = Net()
```
3. 定义损失函数和
阅读全文