如何比较生成的cifar10图像集合和真实图像cifar10 的FID,具体pytorch代码?
时间: 2023-12-09 18:05:44 浏览: 142
要比较生成的cifar10图像集合和真实图像cifar10的FID,需要进行以下步骤:
1. 准备真实图像和生成图像
2. 利用预训练的Inception网络提取特征向量
3. 计算两个集合的均值和协方差矩阵
4. 计算FID分数
下面是利用PyTorch实现的代码:
```python
import torch
from torch.nn.functional import adaptive_avg_pool2d
from torchvision.models import inception_v3
from torchvision.datasets import CIFAR10
from torchvision.transforms import ToTensor
from torch.utils.data import DataLoader
from scipy.linalg import sqrtm
import numpy as np
# 1. 准备真实图像和生成图像
def load_cifar10():
transform = ToTensor()
trainset = CIFAR10(root='./data', train=True, download=True, transform=transform)
testset = CIFAR10(root='./data', train=False, download=True, transform=transform)
return trainset, testset
def get_images(dataset):
dataloader = DataLoader(dataset, batch_size=64, shuffle=False)
images = []
for batch in dataloader:
images.append(batch[0].numpy())
images = np.concatenate(images, axis=0)
return images
real_dataset, fake_dataset = load_cifar10()
real_images = get_images(real_dataset)
fake_images = get_images(fake_dataset)
# 2. 利用预训练的Inception网络提取特征向量
def get_inception_model():
model = inception_v3(pretrained=True, transform_input=False)
model.eval()
return model
def get_activations(images, model):
activations = []
for i in range(0, len(images), 64):
batch = torch.from_numpy(images[i:i+64]).cuda()
with torch.no_grad():
features = model(batch)[0]
activations.append(features.cpu().numpy())
activations = np.concatenate(activations, axis=0)
return activations
inception_model = get_inception_model()
real_activations = get_activations(real_images, inception_model)
fake_activations = get_activations(fake_images, inception_model)
# 3. 计算两个集合的均值和协方差矩阵
def calculate_fid(real_activations, fake_activations):
mu1, sigma1 = np.mean(real_activations, axis=0), np.cov(real_activations, rowvar=False)
mu2, sigma2 = np.mean(fake_activations, axis=0), np.cov(fake_activations, rowvar=False)
diff = mu1 - mu2
covmean, _ = sqrtm(sigma1.dot(sigma2), disp=False)
if np.iscomplexobj(covmean):
covmean = covmean.real
fid = diff.dot(diff) + np.trace(sigma1) + np.trace(sigma2) - 2 * np.trace(covmean)
return fid
fid = calculate_fid(real_activations, fake_activations)
print("FID score:", fid)
```
其中,利用了PyTorch内置的InceptionV3模型来提取图像特征向量,并使用scipy库中的sqrtm函数计算矩阵平方根。最终输出FID分数。
阅读全文