cifar10图像分类pytorch
时间: 2023-04-07 09:05:38 浏览: 53
我可以回答这个问题。CIFAR-10是一个常用的图像分类数据集,包含10个类别的60000张32x32像素的彩色图像。PyTorch是一个流行的深度学习框架,可以用来训练神经网络对CIFAR-10数据集进行分类。
相关问题
cifar10图像分类pytorch cnn
cifar10图像分类pytorch cnn是使用PyTorch深度学习框架实现的卷积神经网络模型,用于对cifar10数据集中的图像进行分类。该模型可以通过训练来学习图像的特征,并将其分类到正确的类别中。在训练过程中,模型会根据损失函数的反馈来不断调整权重和偏置,以提高分类准确率。最终,经过训练的模型可以对新的图像进行分类,并给出相应的预测结果。
cifar10图像分类pytorch代码
以下是一个简单的 CIFAR-10 图像分类的 PyTorch 代码示例:
```python
import torch
import torch.nn as nn
import torch.optim as optim
import torchvision
import torchvision.transforms as transforms
# 定义数据预处理
transform = transforms.Compose(
[transforms.ToTensor(),
transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))])
# 加载训练集和测试集
trainset = torchvision.datasets.CIFAR10(root='./data', train=True,
download=True, transform=transform)
trainloader = torch.utils.data.DataLoader(trainset, batch_size=4,
shuffle=True, num_workers=2)
testset = torchvision.datasets.CIFAR10(root='./data', train=False,
download=True, transform=transform)
testloader = torch.utils.data.DataLoader(testset, batch_size=4,
shuffle=False, num_workers=2)
# 定义分类器
class Net(nn.Module):
def __init__(self):
super(Net, self).__init__()
self.conv1 = nn.Conv2d(3, 6, 5)
self.pool = nn.MaxPool2d(2, 2)
self.conv2 = nn.Conv2d(6, 16, 5)
self.fc1 = nn.Linear(16 * 5 * 5, 120)
self.fc2 = nn.Linear(120, 84)
self.fc3 = nn.Linear(84, 10)
def forward(self, x):
x = self.pool(torch.relu(self.conv1(x)))
x = self.pool(torch.relu(self.conv2(x)))
x = x.view(-1, 16 * 5 * 5)
x = torch.relu(self.fc1(x))
x = torch.relu(self.fc2(x))
x = self.fc3(x)
return x
net = Net()
# 定义损失函数和优化器
criterion = nn.CrossEntropyLoss()
optimizer = optim.SGD(net.parameters(), lr=0.001, momentum=0.9)
# 训练网络
for epoch in range(2): # 多次循环数据集
running_loss = 0.0
for i,
阅读全文