133 cur_loss=F.cross_entropy(preds,labels) 134 _,pred1=torch.max(preds,axis=1) --> 135 cur_acc=torch.sum(lables==pred1)/preds.shape[0] 136 optimizer.zero_grad() 137 cur_loss.backward() NameError: name 'lables' is not defined
时间: 2023-07-16 13:16:17 浏览: 509
这个错误是因为在第 135 行代码中,`lables` 变量没有定义。很可能是一个拼写错误,应该将其更正为 `labels`。
正确的代码应该是:
```
133 cur_loss=F.cross_entropy(preds,labels)
134 _,pred1=torch.max(preds,axis=1)
135 cur_acc=torch.sum(labels==pred1)/preds.shape[0]
136 optimizer.zero_grad()
137 cur_loss.backward()
```
相关问题
报错Cell In[2], line 120, in train(dataloader, model, loss_fn, optimizer) 118 cur_loss=F.cross_entropy(preds,labels) 119 pred1=torch.max(preds,axis=1) --> 120 cur_acc=torch.sum((labels==pred1).to(torch.float32))/preds.shape[0] 121 optimizer.zero_grad() 122 cur_loss.backward() AttributeError: 'bool' object has no attribute 'to'
这个错误可能是因为 `(labels==pred1)` 返回了一个布尔类型的张量,而 `to()` 方法只能用于张量类型的转换。可以尝试将 `(labels==pred1)` 改为 `torch.eq(labels, pred1)`,这样返回的就是一个张量,就可以使用 `to()` 方法进行类型转换了。例如:
```
cur_acc=torch.sum(torch.eq(labels,pred1).to(torch.float32))/preds.shape[0]
```
另外,需要注意 `torch.max(preds, axis=1)` 返回的是一个元组,包含两个张量,第一个张量是最大值,第二个张量是最大值对应的索引。如果需要获取最大值对应的索引,可以使用 `torch.max(preds, axis=1)[1]`。
image,y = x.to(device),y.to(device) output = model(image) cur_loss = loss_fn(output,y) _,pred =torch.max(output,axis=1) cur_acc = torch.sum(y==pred)/output.shape[0]
这段代码是一个简单的神经网络分类任务的训练过程,其中:
- `x` 是输入的数据, `y` 是对应的标签;
- `device` 是指定的计算设备,比如 CPU 或者 GPU;
- `model` 是我们定义的神经网络模型, `output` 是模型对输入数据的预测结果;
- `loss_fn` 是损失函数,用于衡量模型预测结果与真实标签之间的差距;
- `torch.max` 函数返回张量在某个维度上的最大值和最大值所在的索引;
- `cur_acc` 表示当前批次的准确率,即模型预测正确的样本数占总样本数的比例。
整个训练过程的目标是最小化损失函数,同时提高准确率。
阅读全文