在地图上有一个点,到其它21个地方的位置需要最小,每个地方的坐标为经纬度坐标,写一段代码求出这一个点

时间: 2024-05-04 19:17:57 浏览: 17
这是一个典型的最小生成树问题,可以使用Prim算法或者Kruskal算法来解决。下面给出Prim算法的实现过程。 假设我们已经将21个地点的经纬度坐标保存在一个二维数组`locations`中,我们可以使用一个一维数组`dist`来保存当前点到每个点的最小距离,使用一个一维数组`visited`来保存每个点是否已经被访问过。 首先,我们将`dist`数组初始化为一个较大的数(比如100000),表示当前点到每个点的距离都是未知的。然后,我们从任意一个点开始,将其标记为已访问,并将这个点到其他点的距离更新到`dist`数组中。接着,我们找到`dist`数组中未被访问过的最小值所对应的点,将其标记为已访问,并将这个点到其他未访问过的点的距离更新到`dist`数组中。不断重复这个过程,直到所有点都被访问过为止。 最后,`dist`数组中的值就是当前点到其他所有点的最小距离之和,我们可以通过比较不同点的最小距离之和来找到最小值所对应的点。 下面是代码实现过程(假设起点为`0`号点): ```python import math # 21个地点的经纬度坐标 locations = [[lat1, lon1], [lat2, lon2], ..., [lat21, lon21]] # 计算两点之间的距离 def distance(location1, location2): lat1, lon1 = location1 lat2, lon2 = location2 R = 6371.0 dlat = math.radians(lat2 - lat1) dlon = math.radians(lon2 - lon1) a = math.sin(dlat / 2) * math.sin(dlat / 2) + math.cos(math.radians(lat1)) \ * math.cos(math.radians(lat2)) * math.sin(dlon / 2) * math.sin(dlon / 2) c = 2 * math.atan2(math.sqrt(a), math.sqrt(1 - a)) return R * c # Prim算法求解最小生成树 def prim(start): n = len(locations) dist = [100000] * n visited = [False] * n dist[start] = 0 for i in range(n): u = -1 for j in range(n): if not visited[j] and (u == -1 or dist[j] < dist[u]): u = j visited[u] = True for v in range(n): if not visited[v]: dist[v] = min(dist[v], distance(locations[u], locations[v])) return sum(dist) # 求出最小距离之和的最小值所对应的点 min_distance = 100000 min_location = -1 for i in range(len(locations)): d = prim(i) if d < min_distance: min_distance = d min_location = i print("最小距离之和:", min_distance) print("最小距离之和最小的点:", min_location) print("该点的经纬度坐标:", locations[min_location]) ``` 需要注意的是,这个算法的时间复杂度为$O(n^2)$,在本题中因为$n=21$比较小,所以可以接受。如果$n$比较大的话,可以考虑使用Kruskal算法来优化。

相关推荐

最新推荐

recommend-type

python射线法判断一个点在图形区域内外

主要为大家详细介绍了python射线法判断一个点在图形区域内外,具有一定的参考价值,感兴趣的小伙伴们可以参考一下
recommend-type

Android中GPS坐标转换为高德地图坐标详解

最近因为公司需求,在做GPS定位,并且将获得的坐标显示在高德地图上,但是实际效果跟我们期望的是有偏差的。通过查阅资料,才知道有地球坐标、火星坐标之说。下面这篇文章就详细介绍了Android中GPS坐标转换为高德...
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

MATLAB柱状图在信号处理中的应用:可视化信号特征和频谱分析

![matlab画柱状图](https://img-blog.csdnimg.cn/3f32348f1c9c4481a6f5931993732f97.png) # 1. MATLAB柱状图概述** MATLAB柱状图是一种图形化工具,用于可视化数据中不同类别或组的分布情况。它通过绘制垂直条形来表示每个类别或组中的数据值。柱状图在信号处理中广泛用于可视化信号特征和进行频谱分析。 柱状图的优点在于其简单易懂,能够直观地展示数据分布。在信号处理中,柱状图可以帮助工程师识别信号中的模式、趋势和异常情况,从而为信号分析和处理提供有价值的见解。 # 2. 柱状图在信号处理中的应用 柱状图在信号处理
recommend-type

HSV转为RGB的计算公式

HSV (Hue, Saturation, Value) 和 RGB (Red, Green, Blue) 是两种表示颜色的方式。下面是将 HSV 转换为 RGB 的计算公式: 1. 将 HSV 中的 S 和 V 值除以 100,得到范围在 0~1 之间的值。 2. 计算色相 H 在 RGB 中的值。如果 H 的范围在 0~60 或者 300~360 之间,则 R = V,G = (H/60)×V,B = 0。如果 H 的范围在 60~120 之间,则 R = ((120-H)/60)×V,G = V,B = 0。如果 H 的范围在 120~180 之间,则 R = 0,G = V,B =
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

MATLAB柱状图在数据分析中的作用:从可视化到洞察

![MATLAB柱状图在数据分析中的作用:从可视化到洞察](https://img-blog.csdnimg.cn/img_convert/1a36558cefc0339f7836cca7680c0aef.png) # 1. MATLAB柱状图概述** 柱状图是一种广泛用于数据可视化的图表类型,它使用垂直条形来表示数据中不同类别或组别的值。在MATLAB中,柱状图通过`bar`函数创建,该函数接受数据向量或矩阵作为输入,并生成相应的高度条形。 柱状图的优点在于其简单性和易于理解性。它们可以快速有效地传达数据分布和组别之间的比较。此外,MATLAB提供了广泛的定制选项,允许用户调整条形颜色、
recommend-type

已知自动控制原理中通过更高的频率特征来评估切割频率和库存——相位稳定。确定封闭系统的稳定性。求Wcp 和ψ已知W(p)=30•(0.1p+1)•(12.5p+1)/p•(10p+1)•(0.2p+1)•(p+1)

根据相位稳定的定义,我们需要找到一个频率 Wcp,使得相位满足 -ψ = -180°,即 ψ = 180°。此时系统的相位裕度为 0°,系统处于边缘稳定状态。 首先,我们需要将 W(p) 表示成极点和零点的形式。将分母和分子分别因式分解,得到: W(p) = 30 • (0.1p+1) • (12.5p+1) / [p • (10p+1) • (0.2p+1) • (p+1)] = 375p/(p+1) - 3750/(10p+1) + 750p/(0.2p+1) - 3750p/(10p+1) + 150p/(p+1) + 30 因此,系统的极点为 -1、-0.1、-0.2、