能给我个多元时间序列LSTM模型预测的教程么?
时间: 2023-08-23 11:10:49 浏览: 81
多元多步时间序列的LSTM模型预测-基于Keras.zip
当然可以。以下是一个基于多元时间序列的LSTM模型的预测教程:
1. 导入相关库和数据集
```python
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from keras.models import Sequential
from keras.layers import LSTM, Dense
from sklearn.preprocessing import MinMaxScaler
# 读取数据集
dataset = pd.read_csv('data.csv', index_col='Date', parse_dates=['Date'])
```
2. 数据预处理
```python
# 缩放数据
scaler = MinMaxScaler(feature_range=(0, 1))
scaled_data = scaler.fit_transform(dataset)
# 定义函数将数据转换为多元序列形式
def create_multivariate_sequence(data, look_back):
X, Y = [], []
for i in range(len(data) - look_back):
X.append(data[i:(i + look_back), :])
Y.append(data[(i + look_back), 0])
return np.array(X), np.array(Y)
# 指定前几个月的数据作为训练集,后几个月的数据作为测试集
train_size = int(len(scaled_data) * 0.7)
test_size = len(scaled_data) - train_size
train_data, test_data = scaled_data[0:train_size,:], scaled_data[train_size:len(scaled_data),:]
# 将数据转换为多元序列形式
look_back = 3
train_X, train_Y = create_multivariate_sequence(train_data, look_back)
test_X, test_Y = create_multivariate_sequence(test_data, look_back)
# 重塑输入为 [样本数, 时间步, 特征数] 的形状
train_X = np.reshape(train_X, (train_X.shape[0], train_X.shape[1], train_X.shape[2]))
test_X = np.reshape(test_X, (test_X.shape[0], test_X.shape[1], test_X.shape[2]))
```
3. 构建LSTM模型
```python
model = Sequential()
model.add(LSTM(units=50, return_sequences=True, input_shape=(train_X.shape[1], train_X.shape[2])))
model.add(LSTM(units=50))
model.add(Dense(1))
model.compile(loss='mean_squared_error', optimizer='adam')
```
4. 训练模型
```python
model.fit(train_X, train_Y, epochs=100, batch_size=32, validation_data=(test_X, test_Y), verbose=2)
```
5. 预测结果
```python
# 预测训练集和测试集
train_predict = model.predict(train_X)
test_predict = model.predict(test_X)
# 反缩放预测数据
train_predict = scaler.inverse_transform(train_predict)
train_Y = scaler.inverse_transform([train_Y])
test_predict = scaler.inverse_transform(test_predict)
test_Y = scaler.inverse_transform([test_Y])
# 计算训练集和测试集的RMSE
train_rmse = np.sqrt(np.mean((train_Y[0] - train_predict[:,0])**2))
test_rmse = np.sqrt(np.mean((test_Y[0] - test_predict[:,0])**2))
print('Train RMSE: %.2f' % (train_rmse))
print('Test RMSE: %.2f' % (test_rmse))
# 绘制预测结果
plt.plot(dataset.index, dataset['Value'], label='Original')
plt.plot(dataset.index[look_back:train_size], train_predict[:,0], label='Train Predict')
plt.plot(dataset.index[train_size+look_back:], test_predict[:,0], label='Test Predict')
plt.legend(loc='best')
plt.show()
```
这样,一个基于多元时间序列的LSTM模型预测就完成了。
阅读全文