cv2.applyColorMap
时间: 2023-11-06 19:45:17 浏览: 99
cv2.applyColorMap() 是 OpenCV 中用于将灰度图转换为伪彩色图的函数。它接受两个参数:输入图像和色彩映射表(也称为 LUT),并输出一个 8 位的伪彩色图像。色彩映射表指定了灰度级别与颜色之间的对应关系,通常是一个 $1 \times 256$ 的矩阵,其中每个元素表示对应灰度级别的颜色。常见的色彩映射表包括彩虹、灰度等。
相关问题
def image_hist2d(image_path: str): # 二维直方图 img = cv.imread(image_path, cv.IMREAD_COLOR) cv.imshow('img', img) # 图像转HSV颜色空间 hsv = cv.cvtColor(img, cv.COLOR_BGR2HSV) hist = cv.calcHist([hsv], [0, 1], None, [48, 48], [0, 180, 0, 256]) dst = cv.resize(hist, (400, 400)) # 像素归一化 cv.normalize(dst, dst, 0, 255, cv.NORM_MINMAX) # 色彩填充 dst = cv.applyColorMap(np.uint8(dst), cv.COLORMAP_JET) cv.imshow('hist', dst) plt.imshow(hist, interpolation='nearest') plt.title('2D Histogram') plt.show() cv.waitKey(0) cv.destroyAllWindows()
这段代码实现了计算并绘制图像的二维直方图。具体步骤如下:
1. 读取图像:使用`cv.imread(image_path, cv.IMREAD_COLOR)`函数读取指定路径的图像,并将其存储在变量`img`中。
2. 显示图像:使用`cv.imshow('img', img)`函数显示原始图像。
3. 转换颜色空间:使用`cv.cvtColor(img, cv.COLOR_BGR2HSV)`函数将图像从BGR颜色空间转换为HSV颜色空间,并将转换后的图像存储在变量`hsv`中。
4. 计算二维直方图:使用`cv.calcHist([hsv], [0, 1], None, [48, 48], [0, 180, 0, 256])`函数计算二维直方图。其中,`[hsv]`表示输入图像,`[0, 1]`表示通道索引,表示计算第0和第1个通道的直方图,`[48, 48]`表示直方图的大小为48x48,`[0, 180, 0, 256]`表示两个通道的范围分别是H通道(色调)的范围为0到180,S通道(饱和度)的范围为0到256。
5. 调整直方图尺寸:使用`cv.resize(hist, (400, 400))`函数将直方图调整为400x400的大小,并将调整后的直方图存储在变量`dst`中。
6. 像素归一化:使用`cv.normalize(dst, dst, 0, 255, cv.NORM_MINMAX)`函数将直方图像素值归一化到0到255的范围。
7. 色彩填充:使用`cv.applyColorMap(np.uint8(dst), cv.COLORMAP_JET)`函数将归一化后的直方图应用颜色映射,使其具有色彩填充效果,并将填充后的图像存储在变量`dst`中。
8. 显示直方图:使用`cv.imshow('hist', dst)`函数显示填充后的直方图。
9. 绘制直方图:使用`plt.imshow(hist, interpolation='nearest')`函数绘制二维直方图,`interpolation='nearest'`参数指定使用最近邻插值方法绘制图像。
10. 设置图像标题:使用`plt.title('2D Histogram')`函数设置图像的标题。
11. 显示绘制结果:使用`plt.show()`函数显示绘制的二维直方图。
12. 等待按键:使用`cv.waitKey(0)`函数等待用户按下任意按键。
13. 关闭窗口:使用`cv.destroyAllWindows()`函数关闭所有打开的窗口。
这段代码可以帮助我们分析图像在HSV颜色空间中的色调和饱和度分布情况,以便进行颜色相关的图像处理或分析。
def Grad_Cam(model, image, layer_name): # 获取模型提取全链接之前的特征图 new_model = nn.Sequential(*list(model.children())[:44]) print(new_model) new_model.eval() feature_maps = new_model(image) # 获取模型最后一层卷积层 target_layer = model._modules.get(layer_name) # 将模型最后一层卷积层的输出结果作为反向传播的梯度 gradient = torch.zeros(feature_maps.size()) # 返回一个形状与feature_maps相同全为标量 0 的张量 gradient[:, :, feature_maps.size()[2]//2, feature_maps.size()[3]//2] = 1 target_layer.zero_grad() # 将模型中参数的梯度置为0 feature_maps.backward(gradient=gradient) # 获取模型最后一层卷积层的输出结果和梯度 _, _, H, W = feature_maps.size() output_activations = feature_maps.detach().numpy()[0] gradients = target_layer.weight.grad.detach().numpy() # 计算特征图中每个像素点的权重 weights = np.mean(gradients, axis=(2, 3))[0] cam = np.zeros((H, W), dtype=np.float32) for i, w in enumerate(weights): cam += w * output_activations[i, :, :] # 对权重进行归一化处理 cam = np.maximum(cam, 0) cam = cv2.resize(cam, (1440, 1440)) cam = cam - np.min(cam) cam = cam / np.max(cam) # 将热力图叠加到原图上 heatmap = cv2.applyColorMap(np.uint8(255 * cam), cv2.COLORMAP_JET) heatmap = np.float32(heatmap) / 255 image = image.detach().numpy() image = np.transpose(image, (0, 2, 3, 1)) img_CCT = cv2.imread("F:/BaiduSyncdisk/python/svm_CCT/picture CCT_CP/2L5830N023_CCT.png") img_CP = cv2.imread("F:/BaiduSyncdisk/python/svm_CCT/picture CCT_CP/2L5830N023_CP.png") img_CCT = cv2.resize(img_CCT, (1440, 1440)) img_CP = cv2.resize(img_CP, (1440, 1440)) cam_img = heatmap + np.float32(img_CCT[0]) cam_img = cam_img / np.max(cam_img) return np.uint8(255 * cam_img) 上述代码不显示热力图,怎么解决
可能是因为在使用 OpenCV 的 `cv2.imshow()` 函数显示图像时,会因为使用了多线程导致程序崩溃。可以尝试使用 `matplotlib` 库来显示热力图,代码如下:
```python
import matplotlib.pyplot as plt
# 将热力图进行归一化处理
heatmap = cv2.resize(cam, (image.shape[2], image.shape[3]))
heatmap = heatmap - np.min(heatmap)
heatmap = heatmap / np.max(heatmap)
# 将热力图叠加到原图上
heatmap = cv2.applyColorMap(np.uint8(255 * heatmap), cv2.COLORMAP_JET)
cam_img = np.float32(heatmap) / 255 + np.transpose(image[0], (1, 2, 0))
cam_img = cam_img / np.max(cam_img)
# 使用 matplotlib 显示热力图
plt.imshow(cam_img)
plt.show()
```
这样就可以在 Jupyter Notebook 或者 Python IDE 中显示热力图了。如果仍然无法显示,可以尝试将 `plt.show()` 替换为 `plt.savefig('heatmap.png')`,将热力图保存为图片进行查看。
阅读全文