clc;clear all;close all; file=dir('E:\level0*.csv'); data_all=[]; len=length(file); x=file(1).name y=fullfile('E:\level0',x); z=readmatrix(y,'OutputType','string'); c=z; for i=1:len-1 x=file(i+1).name y=fullfile('E:\level0',x); z=readmatrix(y,'OutputType','string'); c=[c;z]; end这段代码中,怎么把数组维度调整为一致?

时间: 2024-02-20 20:59:41 浏览: 25
在这段代码中,可以使用函数`reshape`来调整数组维度为一致。具体来说,可以先将每个文件中的数据按照行排列成一个一维数组,然后使用`reshape`函数将它们变成相同长度的二维数组。代码如下: ``` clc; clear all; close all; file = dir('E:\level0*.csv'); data_all = []; len = length(file); for i = 1:len filename = fullfile('E:\level0', file(i).name); data = readmatrix(filename, 'OutputType', 'string'); data_all = [data_all; data(:)]; end data_all = reshape(data_all, [], size(data, 2)); ``` 在上述代码中,`data(:)`可以将二维数组`data`变成一个列向量,`data_all`则是将所有行向量拼接成的一维数组。最后一行使用`reshape`函数将`data_all`变成一个二维数组,其中`[]`表示自动计算行数或列数。
相关问题

clear; close all; clc; q=1.6e-19; Ib=202e-6; N0=2*q*Ib; Rb=1e6; Tb=1/Rb; R=1; sig_length=1e6; D=5; c=0.15; nt=0.1289; nr=0.9500; N = 10^5; Eb_N0_dB = 1:15; Eb_N0 = 10.^(Eb_N0_dB./10); M = 4; k = 2; s0 = [1 0 0 0]; s1 = [0 1 0 0]; s2 = [0 0 1 0]; s3 = [0 0 0 1]; alpha = [1 2 3 4]; for ii = 1:length(Eb_N0) transmit = randsrc(1,N,alpha); receive = zeros(1,N); P_avg(ii)=sqrt(N0*Rb*Eb_N0(ii)/(2*R^2)); i_peak(ii)=2*R*P_avg(ii); Ep(ii)=i_peak(ii)^2*Tb; sgma(ii)=sqrt(N0*Ep(ii)/2); th=0.5*Ep(ii); for jj = 1:length(transmit) y = zeros(1,4); if transmit(jj) == 1 y =nt*nr.*s0.*exp(-c*D)+sgma(ii)*randn(size(s2)); elseif transmit(jj) == 2 y = nt*nr.*s1.*exp(-c*D)+sgma(ii)*randn(size(s2)); elseif transmit(jj) == 3 y = nt*nr.*s2.*exp(-c*D)+sgma(ii)*randn(size(s2)); elseif transmit(jj) == 4 y = nt*nr.*s3.*exp(-c*D)+sgma(ii)*randn(size(s2)); end y(find(y>th))=1; cmetrics = [dot(y,s0) dot(y,s1) dot(y,s2) dot(y,s3)]; [C, receiveindex] = max(cmetrics); receive(jj) = receiveindex; end errorCount(ii) = nnz([receive - transmit]); end totalError = errorCount/N代码逐句解释

这段代码实现了一个基本的QPSK数字通信系统的仿真,其中QPSK是一种调制方式,将数字信息编码成一个复数信号,其中每个复数点代表两个比特(bit)的信息。下面对代码逐句解释: ``` clear; close all; clc; ``` 清空变量,关闭所有的图形窗口,清空命令行窗口。 ``` q=1.6e-19; Ib=202e-6; N0=2*q*Ib; Rb=1e6; Tb=1/Rb; R=1; sig_length=1e6; D=5; c=0.15; ``` 定义常量,包括电子电荷q、电流Ib、噪声功率谱密度N0、码率Rb、码元时间Tb、电阻R、信号长度sig_length、传播距离D和损耗系数c。 ``` nt=0.1289; nr=0.9500; N = 10^5; Eb_N0_dB = 1:15; Eb_N0 = 10.^(Eb_N0_dB./10); M = 4; k = 2; ``` 定义常量,包括发射端天线增益nt、接收端天线增益nr、发送比特数N、信号能量与噪声功率比Eb/N0(单位为分贝)、调制方式M(这里为QPSK)和每个符号所代表的比特数k。 ``` s0 = [1 0 0 0]; s1 = [0 1 0 0]; s2 = [0 0 1 0]; s3 = [0 0 0 1]; alpha = [1 2 3 4]; ``` 定义4个QPSK调制点,每个点代表两个比特,因此一个符号可以代表4个比特。alpha定义了4个调制点所对应的整数值,分别是1、2、3、4。 ``` for ii = 1:length(Eb_N0) ``` 循环,从Eb/N0的最小值开始,逐渐增加。 ``` transmit = randsrc(1,N,alpha); ``` 产生长度为N的随机整数向量,取值为alpha中的四个整数。 ``` receive = zeros(1,N); ``` 初始化接收向量。 ``` P_avg(ii)=sqrt(N0*Rb*Eb_N0(ii)/(2*R^2)); ``` 计算平均功率。 ``` i_peak(ii)=2*R*P_avg(ii); ``` 计算峰值电流。 ``` Ep(ii)=i_peak(ii)^2*Tb; ``` 计算每个符号的能量。 ``` sgma(ii)=sqrt(N0*Ep(ii)/2); ``` 计算噪声标准差。 ``` th=0.5*Ep(ii); ``` 计算判决门限。 ``` for jj = 1:length(transmit) ``` 循环,处理每个发送比特。 ``` y = zeros(1,4); ``` 初始化接收信号向量。 ``` if transmit(jj) == 1 y =nt*nr.*s0.*exp(-c*D)+sgma(ii)*randn(size(s2)); elseif transmit(jj) == 2 y = nt*nr.*s1.*exp(-c*D)+sgma(ii)*randn(size(s2)); elseif transmit(jj) == 3 y = nt*nr.*s2.*exp(-c*D)+sgma(ii)*randn(size(s2)); elseif transmit(jj) == 4 y = nt*nr.*s3.*exp(-c*D)+sgma(ii)*randn(size(s2)); end ``` 模拟信号在传输过程中的衰减和噪声影响。 ``` y(find(y>th))=1; ``` 判决,如果接收信号大于判决门限,则判定为1。 ``` cmetrics = [dot(y,s0) dot(y,s1) dot(y,s2) dot(y,s3)]; ``` 计算接收信号与四个调制点之间的相关性。 ``` [C, receiveindex] = max(cmetrics); ``` 找到相关性最大的调制点。 ``` receive(jj) = receiveindex; ``` 记录接收到的比特值。 ``` end ``` 处理完一个符号,继续处理下一个符号。 ``` errorCount(ii) = nnz([receive - transmit]); ``` 计算误比特率。 ``` end ``` 处理完所有的Eb/N0值。 ``` totalError = errorCount/N ``` 计算误比特率。

clc clear all close all path=dir('*000'); t0=1; name_train={}; name_test={}; class_train={}; class_test={};

这段代码的作用是读取当前文件夹中以“000”结尾的文件夹中的数据,并将数据分为训练集和测试集,同时记录训练集和测试集的名称和类别。具体实现方式如下: - `clc`、`clear all` 和 `close all` 是 Matlab 中常用的清除命令,用于清除命令行窗口、工作空间和图形窗口中的内容。 - `path=dir('*000')` 用于获取当前文件夹中以“000”结尾的文件夹的信息,并将这些信息存储在 path 变量中。dir 函数返回一个结构体数组,每个元素表示当前文件夹中的一个文件或子文件夹,包含文件或文件夹的名称、日期、大小等信息。 - `t0=1` 定义一个变量 t0,用于记录已经读取的数据数量。 - `name_train={}` 和 `name_test={}` 定义两个空的单元格数组,用于存储训练集和测试集的名称。 - `class_train={}` 和 `class_test={}` 定义两个空的单元格数组,用于存储训练集和测试集的类别。 接下来的代码是对每个以“000”结尾的文件夹进行遍历,并将其中的数据分为训练集和测试集。具体实现方式如下: ``` for i=1:length(path) name=path(i).name; fprintf('Processing %s\n',name); file=dir(sprintf('./%s/*.mat',name)); for j=1:length(file) fprintf('Processing file %d/%d\n',j,length(file)); load(sprintf('./%s/%s',name,file(j).name)); if mod(j,5)==0 name_test{end+1}=file(j).name; class_test{end+1}=name; else name_train{end+1}=file(j).name; class_train{end+1}=name; end t0=t0+1; end end ``` 其中: - `for i=1:length(path)` 对当前文件夹中以“000”结尾的文件夹进行遍历。 - `name=path(i).name` 获取当前遍历到的文件夹的名称。 - `file=dir(sprintf('./%s/*.mat',name))` 获取当前文件夹中所有以“.mat”为扩展名的文件,并将这些文件的信息存储在 file 变量中。 - `for j=1:length(file)` 对当前文件夹中的所有文件进行遍历。 - `load(sprintf('./%s/%s',name,file(j).name))` 加载当前文件的数据。 - `if mod(j,5)==0` 判断当前文件是训练集还是测试集。每隔 5 个文件取一个作为测试集,其余作为训练集。 - `name_test{end+1}=file(j).name` 将当前文件的名称添加到测试集名称列表中。 - `class_test{end+1}=name` 将当前文件夹的名称添加到测试集类别列表中。 - `name_train{end+1}=file(j).name` 将当前文件的名称添加到训练集名称列表中。 - `class_train{end+1}=name` 将当前文件夹的名称添加到训练集类别列表中。 - `t0=t0+1` 更新已读取的数据数量。 最终,该段代码将得到四个单元格数组:name_train、name_test、class_train 和 class_test,分别存储训练集和测试集的名称和类别。

相关推荐

clear;clc parentdir = 'F:\data process\fMRI\fmrioutput'; % 定义储存各被试源文件的上级文件夹 cd(parentdir); % 进入这个上级文件夹 allsubjects = dir('sub*');%查找该文件夹下的所有被试 subinfos = numel(allsubjects); for i=1:numel(allsubjects) % 对每个被试进行循环 cursubject = allsubjects(i).name; % 找到当前被试的名字 matlabbatch=cell(1); curWPAT = fullfile(parentdir,cursubject,'WPAT'); curfucout=fullfile('F:\data process\fMRI\fmrioutput',cursubject,'WPAT') matlabbatch{1}.spm.stats.fmri_spec.dir = {curfucout}; matlabbatch{1}.spm.stats.fmri_spec.sess.scans = cellstr(spm_select('ExtFPList', curWPAT, '^sw*.nii', Inf)) matlabbatch{1}.spm.stats.fmri_spec.timing.units = 'scans'; matlabbatch{1}.spm.stats.fmri_spec.timing.RT = 2; matlabbatch{1}.spm.stats.fmri_spec.timing.fmri_t = 16; matlabbatch{1}.spm.stats.fmri_spec.timing.fmri_t0 = 8; %% matlabbatch{1}.spm.stats.fmri_spec.sess.cond = struct('name', {}, 'onset', {}, 'duration', {}, 'tmod', {}, 'pmod', {}, 'orth', {}); matlabbatch{1}.spm.stats.fmri_spec.sess.multi = {'D:\data process\fMRI\onsets\subject(i)_run1.mat'}; matlabbatch{1}.spm.stats.fmri_spec.sess.regress = struct('name', {}, 'val', {}); matlabbatch{1}.spm.stats.fmri_spec.sess.tempxx=dir(fullfile(curfucout,'rp*.txt')) matlabbatch{1}.spm.stats.fmri_spec.sess.hpf = 128; matlabbatch{1}.spm.stats.fmri_spec.fact = struct('name', {}, 'levels', {}); matlabbatch{1}.spm.stats.fmri_spec.bases.hrf.derivs = [0 0]; matlabbatch{1}.spm.stats.fmri_spec.volt = 1; matlabbatch{1}.spm.stats.fmri_spec.global = 'None'; matlabbatch{1}.spm.stats.fmri_spec.mthresh = 0.8; matlabbatch{1}.spm.stats.fmri_spec.mask = {''}; matlabbatch{1}.spm.stats.fmri_spec.cvi = 'AR(1)'; matlabbatch{2}.spm.stats.fmri_est.spmmat(1) = cfg_dep('fMRI model specification: SPM.mat File', substruct('.','val', '{}',{1}, '.','val', '{}',{1}, '.','val', '{}',{1}), substruct('.','spmmat')); matlabbatch{2}.spm.stats.fmri_est.write_residuals = 0; matlabbatch{2}.spm.stats.fmri_est.method.Classical = 1; matlabbatch{3}.spm.stats.con.spmmat(1) = cfg_dep('Model estimation: SPM.mat File', substruct('.','val', '{}',{2}, '.','val', '{}',{1}, '.','val', '{}',{1}), substruct('.','spmmat')); matlabbatch{3}.spm.stats.con.consess{1}.tcon.name = 'Old'; matlabbatch{3}.spm.stats.con.consess{1}.tcon.weights = 1; matlabbatch{3}.spm.stats.con.consess{1}.tcon.sessrep = 'none'; matlabbatch{3}.spm.stats.con.delete = 0; end;怎么改

最新推荐

recommend-type

毕业设计MATLAB_执行一维相同大小矩阵的QR分解.zip

毕业设计matlab
recommend-type

ipython-7.9.0.tar.gz

Python库是一组预先编写的代码模块,旨在帮助开发者实现特定的编程任务,无需从零开始编写代码。这些库可以包括各种功能,如数学运算、文件操作、数据分析和网络编程等。Python社区提供了大量的第三方库,如NumPy、Pandas和Requests,极大地丰富了Python的应用领域,从数据科学到Web开发。Python库的丰富性是Python成为最受欢迎的编程语言之一的关键原因之一。这些库不仅为初学者提供了快速入门的途径,而且为经验丰富的开发者提供了强大的工具,以高效率、高质量地完成复杂任务。例如,Matplotlib和Seaborn库在数据可视化领域内非常受欢迎,它们提供了广泛的工具和技术,可以创建高度定制化的图表和图形,帮助数据科学家和分析师在数据探索和结果展示中更有效地传达信息。
recommend-type

debugpy-1.0.0b3-cp37-cp37m-manylinux2010_x86_64.whl

Python库是一组预先编写的代码模块,旨在帮助开发者实现特定的编程任务,无需从零开始编写代码。这些库可以包括各种功能,如数学运算、文件操作、数据分析和网络编程等。Python社区提供了大量的第三方库,如NumPy、Pandas和Requests,极大地丰富了Python的应用领域,从数据科学到Web开发。Python库的丰富性是Python成为最受欢迎的编程语言之一的关键原因之一。这些库不仅为初学者提供了快速入门的途径,而且为经验丰富的开发者提供了强大的工具,以高效率、高质量地完成复杂任务。例如,Matplotlib和Seaborn库在数据可视化领域内非常受欢迎,它们提供了广泛的工具和技术,可以创建高度定制化的图表和图形,帮助数据科学家和分析师在数据探索和结果展示中更有效地传达信息。
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

MATLAB柱状图在信号处理中的应用:可视化信号特征和频谱分析

![matlab画柱状图](https://img-blog.csdnimg.cn/3f32348f1c9c4481a6f5931993732f97.png) # 1. MATLAB柱状图概述** MATLAB柱状图是一种图形化工具,用于可视化数据中不同类别或组的分布情况。它通过绘制垂直条形来表示每个类别或组中的数据值。柱状图在信号处理中广泛用于可视化信号特征和进行频谱分析。 柱状图的优点在于其简单易懂,能够直观地展示数据分布。在信号处理中,柱状图可以帮助工程师识别信号中的模式、趋势和异常情况,从而为信号分析和处理提供有价值的见解。 # 2. 柱状图在信号处理中的应用 柱状图在信号处理
recommend-type

帮我设计一个基于Android平台的便签APP的代码

很抱歉,我是一个语言模型AI,无法提供完整的Android APP代码。但是,我可以给您一些设计便签APP的建议和思路。 1. 界面设计 首先考虑APP的界面设计,便签APP通常需要一个主界面用于显示所有的便签,以及一个编辑界面用于编辑单个便签。主界面可以采用列表的形式,列出所有的便签,每个便签可以显示标题和摘要内容。在编辑界面中,用户可以输入标题和正文内容,并且可以设置提醒时间、标签、优先级等。 2. 数据存储 便签APP需要一个数据存储的方案,可以考虑使用SQLite数据库来存储便签数据。每个便签可以存储标题、正文内容、提醒时间、标签、优先级等信息。 3. 便签操作 便签APP
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

MATLAB柱状图在数据分析中的作用:从可视化到洞察

![MATLAB柱状图在数据分析中的作用:从可视化到洞察](https://img-blog.csdnimg.cn/img_convert/1a36558cefc0339f7836cca7680c0aef.png) # 1. MATLAB柱状图概述** 柱状图是一种广泛用于数据可视化的图表类型,它使用垂直条形来表示数据中不同类别或组别的值。在MATLAB中,柱状图通过`bar`函数创建,该函数接受数据向量或矩阵作为输入,并生成相应的高度条形。 柱状图的优点在于其简单性和易于理解性。它们可以快速有效地传达数据分布和组别之间的比较。此外,MATLAB提供了广泛的定制选项,允许用户调整条形颜色、