双目摄像头获取深度视频python
时间: 2023-05-25 22:05:00 浏览: 183
双目摄像头获取深度视频的Python代码如下:
```python
import cv2
import numpy as np
# 定义左右摄像头的索引
left_camera_index = 0
right_camera_index = 1
# 定义摄像头分辨率和帧率
camera_width = 640
camera_height = 480
camera_fps = 30
# 打开摄像头
left_camera = cv2.VideoCapture(left_camera_index)
left_camera.set(cv2.CAP_PROP_FRAME_WIDTH, camera_width)
left_camera.set(cv2.CAP_PROP_FRAME_HEIGHT, camera_height)
left_camera.set(cv2.CAP_PROP_FPS, camera_fps)
right_camera = cv2.VideoCapture(right_camera_index)
right_camera.set(cv2.CAP_PROP_FRAME_WIDTH, camera_width)
right_camera.set(cv2.CAP_PROP_FRAME_HEIGHT, camera_height)
right_camera.set(cv2.CAP_PROP_FPS, camera_fps)
# 定义StereoBM算法的参数
block_size = 15
num_disparities = 64
min_disparity = 0
# 创建StereoBM算法对象
stereo_bm = cv2.StereoBM_create(numDisparities=num_disparities, blockSize=block_size)
# 循环读取摄像头图像
while True:
# 读取左右摄像头的图像
_, left_image = left_camera.read()
_, right_image = right_camera.read()
# 将左右摄像头的图像转换为灰度图像
left_gray = cv2.cvtColor(left_image, cv2.COLOR_BGR2GRAY)
right_gray = cv2.cvtColor(right_image, cv2.COLOR_BGR2GRAY)
# 计算左右摄像头的视差图
disparity = stereo_bm.compute(left_gray, right_gray)
# 将视差图进行归一化
disparity_normalized = cv2.normalize(disparity, None, alpha=0, beta=255, norm_type=cv2.NORM_MINMAX, dtype=cv2.CV_8U)
# 显示深度图像
cv2.imshow("Disparity", disparity_normalized)
# 按下q键退出循环
if cv2.waitKey(1) & 0xFF == ord('q'):
break
# 释放摄像头资源
left_camera.release()
right_camera.release()
# 关闭窗口
cv2.destroyAllWindows()
```
以上代码使用了OpenCV库,在程序开始时,打开双目摄像头,设置摄像头的分辨率和帧率。然后创建StereoBM算法对象,并循环读取摄像头图像,将左右摄像头的图像转换为灰度图像,计算左右摄像头的视差图,将视差图进行归一化,最后显示深度图像。程序可以通过按下q键退出循环,释放摄像头资源并关闭窗口。
阅读全文