实现双目摄像头测距的代码
时间: 2023-10-26 16:08:38 浏览: 119
以下是一个简单的双目摄像头测距的代码示例:
```python
import cv2
import numpy as np
# 定义摄像头
cap_left = cv2.VideoCapture(1)
cap_right = cv2.VideoCapture(2)
# 设置摄像头分辨率
cap_left.set(cv2.CAP_PROP_FRAME_WIDTH, 640)
cap_left.set(cv2.CAP_PROP_FRAME_HEIGHT, 480)
cap_right.set(cv2.CAP_PROP_FRAME_WIDTH, 640)
cap_right.set(cv2.CAP_PROP_FRAME_HEIGHT, 480)
# 定义相机参数
focal_length = 3.04
baseline = 0.073
while True:
# 读取图像
ret_left, img_left = cap_left.read()
ret_right, img_right = cap_right.read()
# 将图像转换为灰度图
gray_left = cv2.cvtColor(img_left, cv2.COLOR_BGR2GRAY)
gray_right = cv2.cvtColor(img_right, cv2.COLOR_BGR2GRAY)
# 利用SIFT算法提取关键点和特征描述子
sift = cv2.xfeatures2d.SIFT_create()
kp_left, des_left = sift.detectAndCompute(gray_left, None)
kp_right, des_right = sift.detectAndCompute(gray_right, None)
# 匹配关键点
bf = cv2.BFMatcher()
matches = bf.knnMatch(des_left, des_right, k=2)
# 筛选匹配点对
good = []
for m, n in matches:
if m.distance < 0.75 * n.distance:
good.append(m)
# 计算深度信息
if len(good) > 10:
# 提取匹配点的坐标
pts_left = np.float32([kp_left[m.queryIdx].pt for m in good]).reshape(-1, 1, 2)
pts_right = np.float32([kp_right[m.trainIdx].pt for m in good]).reshape(-1, 1, 2)
# 计算视差
disparity = pts_left[:, 0, 0] - pts_right[:, 0, 0]
# 计算深度
depth = focal_length * baseline / disparity
depth = np.clip(depth, 0, 10) # 限制深度在0-10米之间
# 在左图上绘制深度信息
for i, pt in enumerate(pts_left):
cv2.circle(img_left, tuple(pt[0]), 3, (0, 0, 255), -1)
cv2.putText(img_left, '{0:.3f}m'.format(depth[i]), tuple(pt[0]), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 255, 0), 1)
# 显示图像
cv2.imshow('left', img_left)
cv2.imshow('right', img_right)
# 按下q键退出程序
if cv2.waitKey(1) == ord('q'):
break
# 释放摄像头并关闭窗口
cap_left.release()
cap_right.release()
cv2.destroyAllWindows()
```
在这个示例代码中,我们利用了OpenCV提供的SIFT算法来提取图像中的关键点和特征描述子,并利用BFMatcher算法进行关键点匹配。然后,我们根据匹配点的坐标计算视差,并利用相机参数计算深度信息。最后,我们在左图上绘制深度信息,并将结果显示在窗口中。
阅读全文