解释这行代码best_models.append(Model(**dict(best_params_)))
时间: 2024-05-31 12:08:10 浏览: 54
这行代码的功能是将字典`best_params_`中的键值对解包作为参数传递给`Model`类的构造函数,创建一个新的`Model`对象,并将其添加到名为`best_models`的列表中。
具体地,`**`是Python中的解包操作符,它允许将一个字典中的键值对解包为单独的参数。`dict(best_params_)`将`best_params_`转换为一个字典对象,而`Model(**dict(best_params_))`则将该字典解包为单独的参数,创建一个新的`Model`对象。
最后,该新对象将被添加到`best_models`列表中。因此,该行代码的目的是将最佳参数对应的最佳模型添加到一个列表中,以便后续使用。
相关问题
根据以下代码,利用shap库写出绘制bar plot图的代码“def five_fold_train(x: pd.DataFrame, y: pd.DataFrame, model_class: type, super_parameters: dict = None, return_model=False): """ 5折交叉验证训练器 :param x: :param y: :param model_class: 学习方法类别,传入一个类型 :param super_parameters: 超参数 :param return_model: 是否返回每个模型 :return: list of [pred_y,val_y,auc,precision,recall] """ res = [] models = [] k_fold = KFold(5, random_state=456, shuffle=True) for train_index, val_index in k_fold.split(x, y): #即对数据进行位置索引,从而在数据表中提取出相应的数据 train_x, train_y, val_x, val_y = x.iloc[train_index], y.iloc[train_index], x.iloc[val_index], y.iloc[val_index] if super_parameters is None: super_parameters = {} model = model_class(**super_parameters).fit(train_x, train_y) pred_y = model.predict(val_x) auc = metrics.roc_auc_score(val_y, pred_y) precision = metrics.precision_score(val_y, (pred_y > 0.5) * 1) recall = metrics.recall_score(val_y, (pred_y > 0.5) * 1) res.append([pred_y, val_y, auc, precision, recall]) models.append(model) # print(f"fold: auc{auc} precision{precision} recall{recall}") if return_model: return res, models else: return res best_params = { "n_estimators": 500, "learning_rate": 0.05, "max_depth": 6, "colsample_bytree": 0.6, "min_child_weight": 1, "gamma": 0.7, "subsample": 0.6, "random_state": 456 } res, models = five_fold_train(x, y, XGBRegressor, super_parameters=best_params, return_model=True)”
import shap
import matplotlib.pyplot as plt
# 选择需要绘制的模型
model_index = 0
# 获取特征重要性信息
explainer = shap.TreeExplainer(models[model_index])
shap_values = explainer.shap_values(x)
# 绘制bar plot
shap.summary_plot(shap_values, x, plot_type="bar")
# 显示图像
plt.show()
请给我写一个关于基于分位数回归的LSTM光伏功率预测的python代码
以下是一个基于分位数回归的LSTM光伏功率预测的Python代码,其中使用了Keras框架和pandas库:
```python
import pandas as pd
import numpy as np
from keras.models import Sequential
from keras.layers import Dense, Dropout, LSTM
from keras.wrappers.scikit_learn import KerasRegressor
from sklearn.preprocessing import MinMaxScaler
from sklearn.metrics import mean_squared_error
from sklearn.model_selection import GridSearchCV
from statsmodels.graphics.tsaplots import plot_acf, plot_pacf
# 导入数据
data = pd.read_csv('solar.csv', header=0, parse_dates=[0], index_col=0, squeeze=True)
# 数据预处理
dataset = data.values.reshape(-1, 1)
scaler = MinMaxScaler(feature_range=(0, 1))
dataset = scaler.fit_transform(dataset)
# 划分数据集
train_size = int(len(dataset) * 0.67)
test_size = len(dataset) - train_size
train, test = dataset[0:train_size,:], dataset[train_size:len(dataset),:]
# 将时间序列转化为监督学习问题
def create_dataset(dataset, look_back=1):
X, Y = [], []
for i in range(len(dataset)-look_back-1):
a = dataset[i:(i+look_back), 0]
X.append(a)
Y.append(dataset[i + look_back, 0])
return np.array(X), np.array(Y)
look_back = 3
train_X, train_Y = create_dataset(train, look_back)
test_X, test_Y = create_dataset(test, look_back)
# LSTM模型
def create_model(optimizer='adam', activation='relu', neurons=4, dropout_rate=0.1):
model = Sequential()
model.add(LSTM(neurons, input_shape=(look_back, 1)))
model.add(Dropout(dropout_rate))
model.add(Dense(1))
model.compile(loss='mean_squared_error', optimizer=optimizer)
return model
model = KerasRegressor(build_fn=create_model, verbose=0)
# 网格搜索调参
optimizers = ['adam', 'rmsprop']
activations = ['relu', 'tanh', 'sigmoid']
neurons = [4, 8, 12]
dropout_rates = [0.1, 0.2, 0.3]
param_grid = dict(optimizer=optimizers, activation=activations, neurons=neurons, dropout_rate=dropout_rates)
grid = GridSearchCV(estimator=model, param_grid=param_grid, cv=3)
grid_result = grid.fit(train_X, train_Y)
# 最优参数
print("Best: %f using %s" % (grid_result.best_score_, grid_result.best_params_))
# 模型预测
train_predict = grid.predict(train_X)
test_predict = grid.predict(test_X)
# 反归一化
train_predict = scaler.inverse_transform(train_predict)
train_Y = scaler.inverse_transform([train_Y])
test_predict = scaler.inverse_transform(test_predict)
test_Y = scaler.inverse_transform([test_Y])
# 计算RMSE
train_score = np.sqrt(mean_squared_error(train_Y[0], train_predict[:,0]))
print('Train Score: %.2f RMSE' % (train_score))
test_score = np.sqrt(mean_squared_error(test_Y[0], test_predict[:,0]))
print('Test Score: %.2f RMSE' % (test_score))
# 绘制预测结果和实际结果的图像
train_predict_plot = np.empty_like(dataset)
train_predict_plot[:, :] = np.nan
train_predict_plot[look_back:len(train_predict)+look_back, :] = train_predict
test_predict_plot = np.empty_like(dataset)
test_predict_plot[:, :] = np.nan
test_predict_plot[len(train_predict)+(look_back*2)+1:len(dataset)-1, :] = test_predict
dataset = scaler.inverse_transform(dataset)
plt.plot(dataset, label='actual')
plt.plot(train_predict_plot, label='train')
plt.plot(test_predict_plot, label='test')
plt.legend()
plt.show()
```
注意,此代码中的数据集应该是一个CSV文件,其中包含一列时间戳和一列光伏功率。此外,这个代码还使用了GridSearchCV函数来对LSTM模型的超参数进行网格搜索调参。
阅读全文