kernel_size = self._extend_for_multilayer(kernel_size, num_layers)
时间: 2023-04-03 13:05:10 浏览: 213
这个问题是关于深度学习中卷积神经网络的参数设置,我可以回答这个问题。在卷积神经网络中,kernel_size 表示卷积核的大小,可以通过 _extend_for_multilayer 方法来扩展卷积核的大小,以适应多层卷积的情况。具体实现可以参考相关的深度学习框架文档。
相关问题
class InvertedResidual(nn.Cell): def init(self, inp, oup, stride, expand_ratio): super(InvertedResidual, self).init() assert stride in [1, 2] hidden_dim = int(round(inp * expand_ratio)) self.use_res_connect = stride == 1 and inp == oup layers = [] if expand_ratio != 1: layers.append(ConvBNReLU(inp, hidden_dim, kernel_size=1)) layers.extend([ dw ConvBNReLU(hidden_dim, hidden_dim, stride=stride, groups=hidden_dim), pw-linear nn.Conv2d(hidden_dim, oup, kernel_size=1, stride=1, has_bias=False), nn.BatchNorm2d(oup), ]) self.conv = nn.SequentialCell(layers) self.add = ops.Add() self.cast = ops.Cast() def construct(self, x): identity = x x = self.conv(x) if self.use_res_connect: return self.add(identity, x) return x
这段代码是一个定义了反向残差模块(InResidual)的类。这个模块深度学习的卷积神经网络常用于增加网络的深度和线性表示能力。在该类中构造函数(__init__)接受输入通道数(inp)、输出通道数(oup)、步长(stride)和扩展比例(expand_ratio)作为参数。
在构造函数中,首先进行了一些参数的检查和计算。然后根据是否需要进行残差连接来选择不同网络层。如果步长为1且输入通道数等于输出通道数,则使用残差连接(residual connection)。否则,采用分组卷积(depthwise convolution)和逐点卷积(pointwise convolution)来构建网络层。
在前向传播函数(construct)中,首先保存输入张量作为身份张量(identity),然后通过网络层进行前向传播得到输出张量(x)。最后,根据是否需要进行残差连接,返回相应的结果。
这段代码是使用PyTorch框架编写的,用于定义反向残差模块的类。它可以用于构建深度学习模型中的残差连接部分。
class TemporalModel(nn.Module): def __init__( self, in_channels, receptive_field, input_shape, start_out_channels=64, extra_in_channels=0, n_spatial_layers_between_temporal_layers=0, use_pyramid_pooling=True): super().__init__() self.receptive_field = receptive_field n_temporal_layers = receptive_field - 1 h, w = input_shape modules = [] block_in_channels = in_channels block_out_channels = start_out_channels for _ in range(n_temporal_layers): if use_pyramid_pooling: use_pyramid_pooling = True pool_sizes = [(2, h, w)] else: use_pyramid_pooling = False pool_sizes = None temporal = TemporalBlock( block_in_channels, block_out_channels, use_pyramid_pooling=use_pyramid_pooling, pool_sizes=pool_sizes, ) spatial = [ Bottleneck3D(block_out_channels, block_out_channels, kernel_size=(1, 3, 3)) for _ in range(n_spatial_layers_between_temporal_layers) ] temporal_spatial_layers = nn.Sequential(temporal, *spatial) modules.extend(temporal_spatial_layers) block_in_channels = block_out_channels block_out_channels += extra_in_channels self.out_channels = block_in_channels self.model = nn.Sequential(*modules) def forward(self, x): # Reshape input tensor to (batch, C, time, H, W) x = x.permute(0, 2, 1, 3, 4) x = self.model(x) x = x.permute(0, 2, 1, 3, 4).contiguous() return x[:, (self.receptive_field - 1):]是如何一步步前向传播的?
首先,输入张量x的形状为(batch_size, in_channels, sequence_length, height, width)。
然后,我们将x的维度从(sequence_length, batch_size, in_channels, height, width)改变为(batch_size, sequence_length, in_channels, height, width)。
接下来,我们将模型应用于输入,并将结果从(batch_size, sequence_length, out_channels, height, width)改变为(batch_size, out_channels, sequence_length, height, width),使其与输入张量的形状匹配。
最后,我们将输出张量的维度从(batch_size, out_channels, sequence_length, height, width)改变为(batch_size, sequence_length-receptive_field+1, out_channels, height, width)。其中,sequence_length-receptive_field+1是因为我们使用的是膨胀卷积,其输出序列长度会比输入短receptive_field-1,因此我们需要将其调整为对齐原始输入序列的长度。
阅读全文