matlab深度学习回归模型
时间: 2023-08-24 18:04:59 浏览: 87
Matlab中可以使用深度学习工具箱来构建回归模型。下面是一个示例:
首先,导入数据并将其分成训练集和测试集:
```
load housing
X = housing(:,1:13)';
t = housing(:,14)';
[trainInd,valInd,testInd] = dividerand(size(X,2),0.6,0.2,0.2);
Xtrain = X(:,trainInd);
Ytrain = t(trainInd);
Xval = X(:,valInd);
Yval = t(valInd);
Xtest = X(:,testInd);
Ytest = t(testInd);
```
然后,构建一个简单的神经网络模型:
```
layers = [ ...
sequenceInputLayer(size(Xtrain,1))
fullyConnectedLayer(10)
reluLayer
fullyConnectedLayer(1)
regressionLayer];
```
接下来,指定训练选项:
```
options = trainingOptions('adam', ...
'InitialLearnRate',0.01, ...
'MaxEpochs',100, ...
'MiniBatchSize',32, ...
'ValidationData',{Xval,Yval}, ...
'ValidationFrequency',10, ...
'Verbose',false);
```
最后,使用训练数据和训练选项来训练模型:
```
net = trainNetwork(Xtrain,Ytrain,layers,options);
```
训练完成后,可以使用测试数据来评估模型的性能:
```
YPred = predict(net,Xtest);
rmse = sqrt(mean((YPred - Ytest).^2))
```
以上是一个简单的回归模型的构建过程。可以根据实际情况进行调整和优化。
阅读全文