线性回归相关指令(深度学习回归)matlab
时间: 2024-10-26 13:16:58 浏览: 34
线性回归是一种基本的预测模型,在机器学习和统计学中用于建立因变量与一个或多个自变量之间的线性关系。在MATLAB中,可以使用`fitlm`函数来进行线性回归分析,它是专门用于处理线性模型的工具箱。
以下是创建简单线性回归模型的基本步骤:
1. 导入数据:首先,需要导入包含自变量(X)和因变量(Y)的数据集。例如,如果你的数据存储在一个名为data.csv的文件中,可以使用`readtable`函数读取它。
```matlab
data = readtable('data.csv');
X = data(:, 'predictors'); % 自变量
Y = data(:, 'response'); % 因变量
```
2. 创建模型:然后,你可以使用`fitlm`函数拟合模型,传入自变量和因变量作为输入。
```matlab
model = fitlm(X, Y);
```
3. 模型评估:可以查看模型的摘要信息,了解系数、R²值等性能指标。
```matlab
disp(model)
```
4. 预测:对于新的观测值,可以使用`predict`函数进行预测。
```matlab
new_X = ...; % 新的自变量值
predictions = predict(model, new_X);
```
阅读全文
相关推荐

















