dncnn train.py
时间: 2023-12-10 11:56:24 浏览: 130
train.py
DnCNN是一种基于深度学习的图像去噪算法,train.py是用来训练DnCNN模型的脚本。在使用train.py之前,需要确保已经准备好了训练集和测试集数据,并且已经安装好了相关的依赖库。
以下是一个简单的DnCNN模型训练示例:
1. 导入必要的库和定义模型
```python
import torch
import torch.nn as nn
import torch.optim as optim
from torch.utils.data import DataLoader
from dataset import MyDataset
from model import DnCNN
# 定义模型
model = DnCNN()
```
2. 定义超参数和优化器
```python
# 定义超参数
batch_size = 128
learning_rate = 0.001
num_epochs = 50
# 定义优化器
optimizer = optim.Adam(model.parameters(), lr=learning_rate)
```
3. 加载数据集
```python
# 加载训练集和测试集
train_dataset = MyDataset(train=True)
test_dataset = MyDataset(train=False)
# 使用DataLoader加载数据集
train_loader = DataLoader(dataset=train_dataset, batch_size=batch_size, shuffle=True)
test_loader = DataLoader(dataset=test_dataset, batch_size=batch_size, shuffle=False)
```
4. 训练模型
```python
# 开始训练
for epoch in range(num_epochs):
model.train()
train_loss = 0.0
for data in train_loader:
inputs, labels = data
optimizer.zero_grad()
outputs = model(inputs)
loss = nn.MSELoss()(outputs, labels)
loss.backward()
optimizer.step()
train_loss += loss.item() * inputs.size(0)
# 计算测试集上的损失
model.eval()
test_loss = 0.0
with torch.no_grad():
for data in test_loader:
inputs, labels = data
outputs = model(inputs)
loss = nn.MSELoss()(outputs, labels)
test_loss += loss.item() * inputs.size(0)
train_loss /= len(train_dataset)
test_loss /= len(test_dataset)
print("Epoch: {}, Train Loss: {:.4f}, Test Loss: {:.4f}".format(epoch+1, train_loss, test_loss))
```
在训练完成后,可以使用训练好的模型对新的图像进行去噪处理。
阅读全文