基于pytorch的水果图像识别与分类系统的设计与实现,数据集使用Fruits 360,要求编写转换函数对数据集进行数据增强,模型要实现标准量化和批量归一化,并且实现权重衰减,梯度裁剪和Adam优化,最后将训练好的模型保存,操作系统为Windows64,使用pycharm实现

时间: 2024-06-09 20:05:39 浏览: 204
1. 数据集准备 首先,我们需要下载Fruits 360数据集。可以从以下链接下载:https://www.kaggle.com/moltean/fruits 解压后,数据集的目录结构如下: ``` fruits-360/ LICENSE papers/ readme.md Test/ Apple Braeburn/ Apple Crimson Snow/ ... Training/ Apple Braeburn/ Apple Crimson Snow/ ... ``` Training文件夹和Test文件夹分别包含训练集和测试集。每个类别都有一个单独的文件夹。 2. 数据增强 我们可以使用PyTorch中的transforms模块来实现数据增强。在这里,我们使用了以下转换函数: ```python train_transforms = transforms.Compose([ transforms.RandomResizedCrop(224), transforms.RandomHorizontalFlip(), transforms.RandomRotation(20), transforms.ToTensor(), transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]) ]) test_transforms = transforms.Compose([ transforms.Resize(256), transforms.CenterCrop(224), transforms.ToTensor(), transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]) ]) ``` 这些转换函数将训练集和测试集中的图像进行随机裁剪、水平翻转、旋转和归一化等处理。 3. 构建数据集 我们可以使用PyTorch的Dataset和DataLoader来构建数据集。 ```python train_data = datasets.ImageFolder('fruits-360/Training', transform=train_transforms) test_data = datasets.ImageFolder('fruits-360/Test', transform=test_transforms) train_loader = torch.utils.data.DataLoader(train_data, batch_size=32, shuffle=True) test_loader = torch.utils.data.DataLoader(test_data, batch_size=32, shuffle=False) ``` 这里,我们使用ImageFolder类将数据集加载到内存中,并使用DataLoader类将数据集分成批次。 4. 构建模型 我们可以使用PyTorch中的torchvision.models模块来构建模型。在本例中,我们将使用ResNet18模型。 ```python class FruitsClassifier(nn.Module): def __init__(self): super(FruitsClassifier, self).__init__() self.model = models.resnet18(pretrained=True) num_ftrs = self.model.fc.in_features self.model.fc = nn.Linear(num_ftrs, 131) def forward(self, x): x = self.model(x) return x ``` 在这里,我们使用预训练的ResNet18模型,并将其最后一层替换为具有131个输出的全连接层。 5. 训练模型 我们可以使用PyTorch中的torch.optim和torch.nn模块来训练模型。 ```python model = FruitsClassifier().to(device) criterion = nn.CrossEntropyLoss() optimizer = optim.Adam(model.parameters(), lr=0.001, weight_decay=1e-5) scheduler = optim.lr_scheduler.StepLR(optimizer, step_size=7, gamma=0.1) for epoch in range(10): train_loss = 0.0 train_acc = 0.0 val_loss = 0.0 val_acc = 0.0 model.train() for i, data in enumerate(train_loader): inputs, labels = data inputs, labels = inputs.to(device), labels.to(device) optimizer.zero_grad() outputs = model(inputs) loss = criterion(outputs, labels) loss.backward() nn.utils.clip_grad_norm_(model.parameters(), 5) optimizer.step() train_loss += loss.item() * inputs.size(0) _, preds = torch.max(outputs, 1) train_acc += torch.sum(preds == labels.data) train_loss = train_loss / len(train_loader.dataset) train_acc = train_acc / len(train_loader.dataset) model.eval() for i, data in enumerate(test_loader): inputs, labels = data inputs, labels = inputs.to(device), labels.to(device) with torch.no_grad(): outputs = model(inputs) loss = criterion(outputs, labels) val_loss += loss.item() * inputs.size(0) _, preds = torch.max(outputs, 1) val_acc += torch.sum(preds == labels.data) val_loss = val_loss / len(test_loader.dataset) val_acc = val_acc / len(test_loader.dataset) scheduler.step() print('Epoch: {} Train Loss: {:.4f} Train Acc: {:.4f} Val Loss: {:.4f} Val Acc: {:.4f}'.format( epoch+1, train_loss, train_acc, val_loss, val_acc)) # 保存模型 torch.save(model.state_dict(), 'fruits_classifier.pth') ``` 在这里,我们使用交叉熵损失函数、Adam优化器和学习率调度程序来训练模型。我们还使用了权重衰减、梯度裁剪和批量归一化等技术来提高模型的性能。 6. 加载模型 我们可以使用以下代码来加载保存的模型。 ```python model = FruitsClassifier().to(device) model.load_state_dict(torch.load('fruits_classifier.pth')) ``` 这里,我们首先实例化FruitsClassifier模型,并使用load_state_dict方法加载保存的权重。 7. 预测图像 我们可以使用以下代码来预测图像。 ```python def predict_image(image_path): image = Image.open(image_path) image_tensor = test_transforms(image).float() image_tensor = image_tensor.unsqueeze_(0) input = Variable(image_tensor) input = input.to(device) output = model(input) index = output.data.cpu().numpy().argmax() return index ``` 在这里,我们首先打开图像,然后将其转换为PyTorch张量。我们使用训练集中使用的相同变换函数来转换图像。然后,我们将图像转换为模型的输入,并使用模型进行预测。最后,我们返回预测的类别索引。
阅读全文

相关推荐

最新推荐

recommend-type

Pytorch使用MNIST数据集实现CGAN和生成指定的数字方式

在本教程中,我们将探讨如何使用PyTorch框架来实现条件生成对抗网络(CGAN)并利用MNIST数据集生成指定数字的图像。CGAN是一种扩展了基础生成对抗网络(GAN)的概念,它允许在生成过程中加入额外的条件信息,如类...
recommend-type

pytorch 实现数据增强分类 albumentations的使用

在机器学习领域,数据增强是一种重要的技术,它通过在训练数据上应用各种变换来增加模型的泛化能力。PyTorch作为一个流行的深度学习框架,虽然自带了`torchvision.transforms`模块用于数据增强,但其功能相对有限。...
recommend-type

pytorch学习教程之自定义数据集

在本教程中,我们将探讨如何在PyTorch环境中创建自定义数据集,包括数据的组织、数据集类的定义以及使用`DataLoader`进行批量加载。 首先,数据的组织通常是基于项目的结构,例如: ``` data |-- test | |-- dog |...
recommend-type

PyTorch版YOLOv4训练自己的数据集—基于Google Colab

在本文中,我们将探讨如何使用PyTorch在Google Colab上训练YOLOv4模型,以便处理自定义数据集。Google Colab是一个强大的在线环境,为机器学习爱好者和研究人员提供了丰富的资源,特别是免费的GPU支持,这对于运行...
recommend-type

pytorch 语义分割-医学图像-脑肿瘤数据集的载入模块

`__getitem__` 方法用于获取数据集中指定索引的样本,包括原始图像、标注图和图像的原始尺寸,所有数据都被转换成 PyTorch 可以处理的格式,如将图像从 RGB 转换为 C*H*W 格式,并将标注图转为整型数组。 在实际...
recommend-type

JHU荣誉单变量微积分课程教案介绍

资源摘要信息:"jhu2017-18-honors-single-variable-calculus" 知识点一:荣誉单变量微积分课程介绍 本课程为JHU(约翰霍普金斯大学)的荣誉单变量微积分课程,主要针对在2018年秋季和2019年秋季两个学期开设。课程内容涵盖两个学期的微积分知识,包括整合和微分两大部分。该课程采用IBL(Inquiry-Based Learning)格式进行教学,即学生先自行解决问题,然后在学习过程中逐步掌握相关理论知识。 知识点二:IBL教学法 IBL教学法,即问题导向的学习方法,是一种以学生为中心的教学模式。在这种模式下,学生在教师的引导下,通过提出问题、解决问题来获取知识,从而培养学生的自主学习能力和问题解决能力。IBL教学法强调学生的主动参与和探索,教师的角色更多的是引导者和协助者。 知识点三:课程难度及学习方法 课程的第一次迭代主要包含问题,难度较大,学生需要有一定的数学基础和自学能力。第二次迭代则在第一次的基础上增加了更多的理论和解释,难度相对降低,更适合学生理解和学习。这种设计旨在帮助学生从实际问题出发,逐步深入理解微积分理论,提高学习效率。 知识点四:课程先决条件及学习建议 课程的先决条件为预演算,即在进入课程之前需要掌握一定的演算知识和技能。建议在使用这些笔记之前,先完成一些基础演算的入门课程,并进行一些数学证明的练习。这样可以更好地理解和掌握课程内容,提高学习效果。 知识点五:TeX格式文件 标签"TeX"意味着该课程的资料是以TeX格式保存和发布的。TeX是一种基于排版语言的格式,广泛应用于学术出版物的排版,特别是在数学、物理学和计算机科学领域。TeX格式的文件可以确保文档内容的准确性和排版的美观性,适合用于编写和分享复杂的科学和技术文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【实战篇:自定义损失函数】:构建独特损失函数解决特定问题,优化模型性能

![损失函数](https://img-blog.csdnimg.cn/direct/a83762ba6eb248f69091b5154ddf78ca.png) # 1. 损失函数的基本概念与作用 ## 1.1 损失函数定义 损失函数是机器学习中的核心概念,用于衡量模型预测值与实际值之间的差异。它是优化算法调整模型参数以最小化的目标函数。 ```math L(y, f(x)) = \sum_{i=1}^{N} L_i(y_i, f(x_i)) ``` 其中,`L`表示损失函数,`y`为实际值,`f(x)`为模型预测值,`N`为样本数量,`L_i`为第`i`个样本的损失。 ## 1.2 损
recommend-type

如何在ZYNQMP平台上配置TUSB1210 USB接口芯片以实现Host模式,并确保与Linux内核的兼容性?

要在ZYNQMP平台上实现TUSB1210 USB接口芯片的Host模式功能,并确保与Linux内核的兼容性,首先需要在硬件层面完成TUSB1210与ZYNQMP芯片的正确连接,保证USB2.0和USB3.0之间的硬件电路设计符合ZYNQMP的要求。 参考资源链接:[ZYNQMP USB主机模式实现与测试(TUSB1210)](https://wenku.csdn.net/doc/6nneek7zxw?spm=1055.2569.3001.10343) 具体步骤包括: 1. 在Vivado中设计硬件电路,配置USB接口相关的Bank502和Bank505引脚,同时确保USB时钟的正确配置。
recommend-type

Naruto爱好者必备CLI测试应用

资源摘要信息:"Are-you-a-Naruto-Fan:CLI测验应用程序,用于检查Naruto狂热者的知识" 该应用程序是一个基于命令行界面(CLI)的测验工具,设计用于测试用户对日本动漫《火影忍者》(Naruto)的知识水平。《火影忍者》是由岸本齐史创作的一部广受欢迎的漫画系列,后被改编成同名电视动画,并衍生出一系列相关的产品和文化现象。该动漫讲述了主角漩涡鸣人从忍者学校开始的成长故事,直到成为木叶隐村的领袖,期间包含了忍者文化、战斗、忍术、友情和忍者世界的政治斗争等元素。 这个测验应用程序的开发主要使用了JavaScript语言。JavaScript是一种广泛应用于前端开发的编程语言,它允许网页具有交互性,同时也可以在服务器端运行(如Node.js环境)。在这个CLI应用程序中,JavaScript被用来处理用户的输入,生成问题,并根据用户的回答来评估其对《火影忍者》的知识水平。 开发这样的测验应用程序可能涉及到以下知识点和技术: 1. **命令行界面(CLI)开发:** CLI应用程序是指用户通过命令行或终端与之交互的软件。在Web开发中,Node.js提供了一个运行JavaScript的环境,使得开发者可以使用JavaScript语言来创建服务器端应用程序和工具,包括CLI应用程序。CLI应用程序通常涉及到使用诸如 commander.js 或 yargs 等库来解析命令行参数和选项。 2. **JavaScript基础:** 开发CLI应用程序需要对JavaScript语言有扎实的理解,包括数据类型、函数、对象、数组、事件循环、异步编程等。 3. **知识库构建:** 测验应用程序的核心是其问题库,它包含了与《火影忍者》相关的各种问题。开发人员需要设计和构建这个知识库,并确保问题的多样性和覆盖面。 4. **逻辑和流程控制:** 在应用程序中,需要编写逻辑来控制测验的流程,比如问题的随机出现、计时器、计分机制以及结束时的反馈。 5. **用户界面(UI)交互:** 尽管是CLI,用户界面仍然重要。开发者需要确保用户体验流畅,这包括清晰的问题呈现、简洁的指令和友好的输出格式。 6. **模块化和封装:** 开发过程中应当遵循模块化原则,将不同的功能分隔开来,以便于管理和维护。例如,可以将问题生成器、计分器和用户输入处理器等封装成独立的模块。 7. **单元测试和调试:** 测验应用程序在发布前需要经过严格的测试和调试。使用如Mocha或Jest这样的JavaScript测试框架可以编写单元测试,并通过控制台输出调试信息来排除故障。 8. **部署和分发:** 最后,开发完成的应用程序需要被打包和分发。如果是基于Node.js的应用程序,常见的做法是将其打包为可执行文件(如使用electron或pkg工具),以便在不同的操作系统上运行。 根据提供的文件信息,虽然具体细节有限,但可以推测该应用程序可能采用了上述技术点。用户通过点击提供的链接,可能将被引导到一个网页或直接下载CLI应用程序的可执行文件,从而开始进行《火影忍者》的知识测验。通过这个测验,用户不仅能享受答题的乐趣,还可以加深对《火影忍者》的理解和认识。