基于pytorch的水果图像识别与分类系统的设计与实现,数据集使用Fruits 360,要求编写转换函数对数据集进行数据增强,模型要实现标准量化和批量归一化,并且实现权重衰减,梯度裁剪和Adam优化,最后将训练好的模型保存下来,并利用该模型实现一个分类系统

时间: 2023-06-17 18:04:46 浏览: 195
好的,这是一个比较完整的任务,需要分几个步骤来完成。 首先是数据集的处理。我们需要使用Fruits 360数据集,这个数据集里面包含了多种水果的图像,适合用来进行分类。我们可以使用PyTorch内置的`torchvision.datasets.ImageFolder`类来读取数据集。在读取之前,我们需要对数据集进行数据增强,增加一些随机变换的操作,以增加训练集的多样性,防止过拟合。以下是一个简单的数据增强函数: ```python import torchvision.transforms as transforms # 数据增强 train_transforms = transforms.Compose([ transforms.RandomResizedCrop(size=256, scale=(0.8, 1.0)), transforms.RandomRotation(degrees=15), transforms.ColorJitter(), transforms.RandomHorizontalFlip(), transforms.CenterCrop(size=224), # ImageNet标准尺寸 transforms.ToTensor(), transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]) # ImageNet标准归一化 ]) # 验证集和测试集只需要进行标准化操作 val_transforms = transforms.Compose([ transforms.Resize(size=256), transforms.CenterCrop(size=224), transforms.ToTensor(), transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]) ]) ``` 这里使用了`transforms`模块来进行数据增强。具体的变换包括随机裁剪、随机旋转、颜色抖动、随机水平翻转等,这些变换可以根据实际情况进行选择和调整。 然后我们可以读取数据集并应用数据增强: ```python from torchvision.datasets import ImageFolder from torch.utils.data import DataLoader # 读取数据集并应用数据增强 train_dataset = ImageFolder(root='fruits-360/Training/', transform=train_transforms) val_dataset = ImageFolder(root='fruits-360/Validation/', transform=val_transforms) test_dataset = ImageFolder(root='fruits-360/Test/', transform=val_transforms) # 使用DataLoader进行batch处理 train_loader = DataLoader(dataset=train_dataset, batch_size=32, shuffle=True, num_workers=4) val_loader = DataLoader(dataset=val_dataset, batch_size=32, shuffle=False, num_workers=4) test_loader = DataLoader(dataset=test_dataset, batch_size=32, shuffle=False, num_workers=4) ``` 接下来是模型的设计。我们可以使用一个预训练的ResNet50模型作为基础模型,再在其基础上添加一些自定义的全连接层来进行分类。这样可以充分利用预训练模型的特征提取能力,同时也可以进行一定程度的模型微调。 ```python import torch.nn as nn import torchvision.models as models # 加载预训练模型 resnet = models.resnet50(pretrained=True) # 冻结所有卷积层的参数 for param in resnet.parameters(): param.requires_grad = False # 替换最后一层全连接层 num_ftrs = resnet.fc.in_features resnet.fc = nn.Linear(num_ftrs, len(train_dataset.classes)) # 定义模型 model = resnet ``` 注意到这里我们将模型的最后一层全连接层替换成了一个新的全连接层,输出的类别数为数据集中的类别数。这里还需要注意到,我们将所有卷积层的参数都设置为不需要梯度更新,这样可以避免在微调过程中过多地调整网络的权重,从而保留模型的特征提取能力。 接下来是模型的训练。我们需要使用标准量化和批量归一化来提高训练的稳定性,同时也需要使用权重衰减、梯度裁剪和Adam优化来进行模型优化。 ```python import torch.optim as optim # 定义优化器和损失函数 optimizer = optim.Adam(model.parameters(), lr=0.001, weight_decay=0.001) criterion = nn.CrossEntropyLoss() # 定义训练函数 def train(model, optimizer, criterion, train_loader, val_loader, num_epochs=10, device='cpu'): best_acc = 0.0 for epoch in range(num_epochs): model.train() running_loss = 0.0 running_corrects = 0 for inputs, labels in train_loader: inputs, labels = inputs.to(device), labels.to(device) optimizer.zero_grad() outputs = model(inputs) loss = criterion(outputs, labels) loss.backward() nn.utils.clip_grad_norm_(model.parameters(), max_norm=1.0) # 梯度裁剪 optimizer.step() running_loss += loss.item() * inputs.size(0) _, preds = torch.max(outputs, 1) running_corrects += torch.sum(preds == labels.data) epoch_loss = running_loss / len(train_loader.dataset) epoch_acc = running_corrects.double() / len(train_loader.dataset) print('Epoch {}/{}, Loss: {:.4f}, Acc: {:.4f}'.format(epoch+1, num_epochs, epoch_loss, epoch_acc)) # 在验证集上测试模型性能 model.eval() val_running_loss = 0.0 val_running_corrects = 0 for inputs, labels in val_loader: inputs, labels = inputs.to(device), labels.to(device) with torch.no_grad(): outputs = model(inputs) loss = criterion(outputs, labels) val_running_loss += loss.item() * inputs.size(0) _, preds = torch.max(outputs, 1) val_running_corrects += torch.sum(preds == labels.data) val_loss = val_running_loss / len(val_loader.dataset) val_acc = val_running_corrects.double() / len(val_loader.dataset) print('Val Loss: {:.4f}, Val Acc: {:.4f}'.format(val_loss, val_acc)) # 保存最好的模型 if val_acc > best_acc: best_acc = val_acc torch.save(model.state_dict(), 'model.pt') print('Training finished. Best Val Acc: {:.4f}'.format(best_acc)) ``` 这里的训练函数使用交叉熵损失函数,同时也进行了梯度裁剪和权重衰减。在每个epoch之后,还需要在验证集上测试模型的性能,并保存最好的模型。 最后是模型的测试和应用。我们可以读取训练好的模型,并在测试集上测试模型的性能。同时,我们还可以使用该模型来实现一个简单的分类系统,用于对新的水果图像进行分类。 ```python # 读取模型 model.load_state_dict(torch.load('model.pt')) # 在测试集上测试模型性能 model.eval() test_running_loss = 0.0 test_running_corrects = 0 for inputs, labels in test_loader: inputs, labels = inputs.to(device), labels.to(device) with torch.no_grad(): outputs = model(inputs) loss = criterion(outputs, labels) test_running_loss += loss.item() * inputs.size(0) _, preds = torch.max(outputs, 1) test_running_corrects += torch.sum(preds == labels.data) test_loss = test_running_loss / len(test_loader.dataset) test_acc = test_running_corrects.double() / len(test_loader.dataset) print('Test Loss: {:.4f}, Test Acc: {:.4f}'.format(test_loss, test_acc)) # 实现分类系统 import matplotlib.pyplot as plt import numpy as np from PIL import Image def predict_image(image_path): image = Image.open(image_path) image_tensor = val_transforms(image).float() image_tensor = image_tensor.unsqueeze_(0) input = image_tensor.to(device) output = model(input) index = output.data.cpu().numpy().argmax() return train_dataset.classes[index] image_path = 'fruits-360/Test/Apple Braeburn/0_100.jpg' result = predict_image(image_path) print(result) ``` 这里的分类系统实现了一个`predict_image`函数,它可以接受一张水果图像的路径作为输入,返回该图像对应的水果类别。我们可以使用该函数来对新的水果图像进行分类,并输出预测结果。
阅读全文

相关推荐

大家在看

recommend-type

TPS54160实现24V转正负15V双输出电源AD设计全方案

TPS54160实现24V转正负15V双输出电源AD设计硬件原理PCB+封装库。全套资料使用Altium dsigner 16.1设计,可以给一些需要正负15V电源供电的运放使用。
recommend-type

节的一些关于非传统-华为hcnp-数通题库2020/1/16(h12-221)v2.5

到一母线,且需要一个 PQ 负载连接到同一母线。图 22.8 说明电源和负荷模 块的 22.3.6 发电机斜坡加速 发电机斜坡加速模块必须连接到电源模块。电源模块掩模允许具有零或一个输入端口。 输入端口只用在连接斜坡加速模块;不推荐在电源模块中留下未使用的输入端口。图 22.9 说明了斜坡加速模块的用法。注意:发电机斜坡加速数据只有在与 PSAT 图形存取方法接口 (多时段和单位约束的方法)连用时才有效。 22.3.7 发电机储备 发电机储备模块必须连接到一母线,且需要一个 PV 发电机或一个平衡发电机和电源模 块连接到同一母线。图 22.10 说明储备块使用。注意:发电机储备数据只有在与 PSAT OPF 程序连用时才有效。 22.3.8 非传统负载 非传统负载模块是一些在第 即电压依赖型负载,ZIP 型负 载,频率依赖型负载,指数恢复型负载,温控型负载,Jimma 型负载和混合型负载。前两个 可以在 “潮流后初始化”参数设置为 0 时,当作标准块使用。但是,一般来说,所有非传 统负载都需要在同一母线上连接 PQ 负载。多个非传统负载可以连接在同一母线上,不过, 要注意在同一母线上连接两个指数恢复型负载是没有意义的。见 14.8 节的一些关于非传统 负载用法的说明。图 22.11 表明了 Simulink 模型中的非传统负载的用法。 (c)电源块的不正确 .5 电源和负荷 电源块必须连接到一母线,且需要一个 PV 发电机或一个平衡发电机连接到同一 负荷块必须连接 用法。 14 章中所描述的负载模块, 图 22.9:发电机斜坡加速模块用法。 (a)和(b)斜坡加速块的正确用法;(c)斜坡加速块的不正确用法; (d)电源块的不推荐用法
recommend-type

深圳大学《数据结构》1-4章练习题

深圳大学《数据结构》1-4章练习题
recommend-type

【电子版】校招面试题库(附答案与解析)java篇-破解密码.pdf

2019【电子版】校招面试题库(附答案与解析)java篇 祝大家早日收到心仪的Offer,已破编辑密码。
recommend-type

ICCV2019无人机集群人体动作捕捉文章

ICCV2019最新文章:Markerless Outdoor Human Motion Capture Using Multiple Autonomous Micro Aerial Vehicles 无人机集群,户外人体动作捕捉,三维重建,深度模型

最新推荐

recommend-type

Pytorch使用MNIST数据集实现CGAN和生成指定的数字方式

在本教程中,我们将探讨如何使用PyTorch框架来实现条件生成对抗网络(CGAN)并利用MNIST数据集生成指定数字的图像。CGAN是一种扩展了基础生成对抗网络(GAN)的概念,它允许在生成过程中加入额外的条件信息,如类...
recommend-type

pytorch 实现数据增强分类 albumentations的使用

在机器学习领域,数据增强是一种重要的技术,它通过在训练数据上应用各种变换来增加模型的泛化能力。PyTorch作为一个流行的深度学习框架,虽然自带了`torchvision.transforms`模块用于数据增强,但其功能相对有限。...
recommend-type

pytorch学习教程之自定义数据集

在本教程中,我们将探讨如何在PyTorch环境中创建自定义数据集,包括数据的组织、数据集类的定义以及使用`DataLoader`进行批量加载。 首先,数据的组织通常是基于项目的结构,例如: ``` data |-- test | |-- dog |...
recommend-type

PyTorch版YOLOv4训练自己的数据集—基于Google Colab

在本文中,我们将探讨如何使用PyTorch在Google Colab上训练YOLOv4模型,以便处理自定义数据集。Google Colab是一个强大的在线环境,为机器学习爱好者和研究人员提供了丰富的资源,特别是免费的GPU支持,这对于运行...
recommend-type

pytorch 语义分割-医学图像-脑肿瘤数据集的载入模块

`__getitem__` 方法用于获取数据集中指定索引的样本,包括原始图像、标注图和图像的原始尺寸,所有数据都被转换成 PyTorch 可以处理的格式,如将图像从 RGB 转换为 C*H*W 格式,并将标注图转为整型数组。 在实际...
recommend-type

RStudio中集成Connections包以优化数据库连接管理

资源摘要信息:"connections:https" ### 标题解释 标题 "connections:https" 直接指向了数据库连接领域中的一个重要概念,即通过HTTP协议(HTTPS为安全版本)来建立与数据库的连接。在IT行业,特别是数据科学与分析、软件开发等领域,建立安全的数据库连接是日常工作的关键环节。此外,标题可能暗示了一个特定的R语言包或软件包,用于通过HTTP/HTTPS协议实现数据库连接。 ### 描述分析 描述中提到的 "connections" 是一个软件包,其主要目标是与R语言的DBI(数据库接口)兼容,并集成到RStudio IDE中。它使得R语言能够连接到数据库,尽管它不直接与RStudio的Connections窗格集成。这表明connections软件包是一个辅助工具,它简化了数据库连接的过程,但并没有改变RStudio的用户界面。 描述还提到connections包能够读取配置,并创建与RStudio的集成。这意味着用户可以在RStudio环境下更加便捷地管理数据库连接。此外,该包提供了将数据库连接和表对象固定为pins的功能,这有助于用户在不同的R会话中持续使用这些资源。 ### 功能介绍 connections包中两个主要的功能是 `connection_open()` 和可能被省略的 `c`。`connection_open()` 函数用于打开数据库连接。它提供了一个替代于 `dbConnect()` 函数的方法,但使用完全相同的参数,增加了自动打开RStudio中的Connections窗格的功能。这样的设计使得用户在使用R语言连接数据库时能有更直观和便捷的操作体验。 ### 安装说明 描述中还提供了安装connections包的命令。用户需要先安装remotes包,然后通过remotes包的`install_github()`函数安装connections包。由于connections包不在CRAN(综合R档案网络)上,所以需要使用GitHub仓库来安装,这也意味着用户将能够访问到该软件包的最新开发版本。 ### 标签解读 标签 "r rstudio pins database-connection connection-pane R" 包含了多个关键词: - "r" 指代R语言,一种广泛用于统计分析和图形表示的编程语言。 - "rstudio" 指代RStudio,一个流行的R语言开发环境。 - "pins" 指代R包pins,它可能与connections包一同使用,用于固定数据库连接和表对象。 - "database-connection" 指代数据库连接,即软件包要解决的核心问题。 - "connection-pane" 指代RStudio IDE中的Connections窗格,connections包旨在与之集成。 - "R" 代表R语言社区或R语言本身。 ### 压缩包文件名称列表分析 文件名称列表 "connections-master" 暗示了一个可能的GitHub仓库名称或文件夹名称。通常 "master" 分支代表了软件包或项目的稳定版或最新版,是大多数用户应该下载和使用的版本。 ### 总结 综上所述,connections包是一个专为R语言和RStudio IDE设计的软件包,旨在简化数据库连接过程并提供与Connections窗格的集成。它允许用户以一种更为方便的方式打开和管理数据库连接,而不直接提供与Connections窗格的集成。connections包通过读取配置文件和固定连接对象,增强了用户体验。安装connections包需通过remotes包从GitHub获取最新开发版本。标签信息显示了connections包与R语言、RStudio、数据库连接以及R社区的紧密联系。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

Keil uVision5全面精通指南

# 摘要 Keil uVision5是一个集成开发环境,广泛应用于嵌入式系统的开发。本文从基础入门开始,详细介绍了Keil uVision5的项目管理、配置、编程实践、高级功能及技巧,并通过项目案例分析,深入阐述了其在实际开发中的应用。本篇论文特别注重于项目创建、目标配置、调试环境搭建、性能优化、脚本编程与自动化、高级调试技术,以及通过嵌入式操作系统集成和驱动开发流程的案例分析,展示了Keil uVision5的实用性和高效性。文章还展望了Keil uVision5的未来发展趋势,并提供了社区资源和学习渠道,为读者提供了一个全面掌握Keil uVision5的平台。 # 关键字 Keil u
recommend-type

flink提交给yarn19个全量同步MYsqlCDC的作业,flink的配置参数怎样设置

在Flink中,如果你需要将19个MySQL CDC(Change Data Capture)的全量同步作业提交到YARN上,你需要确保Flink集群和YARN进行了正确的集成,并配置了适当的参数。以下是可能涉及到的一些关键配置: 1. **并行度(Parallelism)**:每个作业的并行度应该设置得足够高,以便充分利用YARN提供的资源。例如,如果你有19个任务,你可以设置总并行度为19或者是一个更大的数,取决于集群规模。 ```yaml parallelism = 19 或者 根据实际资源调整 ``` 2. **YARN资源配置**:Flink通过`yarn.a
recommend-type

PHP博客旅游的探索之旅

资源摘要信息:"博客旅游" 博客旅游是一个以博客形式分享旅行经验和旅游信息的平台。随着互联网技术的发展和普及,博客作为一种个人在线日志的形式,已经成为人们分享生活点滴、专业知识、旅行体验等的重要途径。博客旅游正是结合了博客的个性化分享特点和旅游的探索性,让旅行爱好者可以记录自己的旅游足迹、分享旅游心得、提供目的地推荐和旅游攻略等。 在博客旅游中,旅行者可以是内容的创造者也可以是内容的消费者。作为创造者,旅行者可以通过博客记录下自己的旅行故事、拍摄的照片和视频、体验和评价各种旅游资源,如酒店、餐馆、景点等,还可以分享旅游小贴士、旅行日程规划等实用信息。作为消费者,其他潜在的旅行者可以通过阅读这些博客内容获得灵感、获取旅行建议,为自己的旅行做准备。 在技术层面,博客平台的构建往往涉及到多种编程语言和技术栈,例如本文件中提到的“PHP”。PHP是一种广泛使用的开源服务器端脚本语言,特别适合于网页开发,并可以嵌入到HTML中使用。使用PHP开发的博客旅游平台可以具有动态内容、用户交互和数据库管理等强大的功能。例如,通过PHP可以实现用户注册登录、博客内容的发布与管理、评论互动、图片和视频上传、博客文章的分类与搜索等功能。 开发一个功能完整的博客旅游平台,可能需要使用到以下几种PHP相关的技术和框架: 1. HTML/CSS/JavaScript:前端页面设计和用户交互的基础技术。 2. 数据库管理:如MySQL,用于存储用户信息、博客文章、评论等数据。 3. MVC框架:如Laravel或CodeIgniter,提供了一种组织代码和应用逻辑的结构化方式。 4. 服务器技术:如Apache或Nginx,作为PHP的运行环境。 5. 安全性考虑:需要实现数据加密、输入验证、防止跨站脚本攻击(XSS)等安全措施。 当创建博客旅游平台时,还需要考虑网站的可扩展性、用户体验、移动端适配、搜索引擎优化(SEO)等多方面因素。一个优质的博客旅游平台,不仅能够提供丰富的内容,还应该注重用户体验,包括页面加载速度、界面设计、内容的易于导航等。 此外,博客旅游平台还可以通过整合社交媒体功能,允许用户通过社交媒体账号登录、分享博客内容到社交网络,从而提升平台的互动性和可见度。 综上所述,博客旅游作为一个结合了旅行分享和在线日志的平台,对于旅行者来说,不仅是一个记录和分享旅行体验的地方,也是一个获取旅行信息、学习旅游知识的重要资源。而对于开发者来说,构建这样一个平台需要运用到多种技术和考虑多个技术细节,确保平台的功能性和用户体验。