可以写一个基于LM优化方法的BP神经网络模型代码
时间: 2024-05-15 17:17:36 浏览: 153
当然可以!以下是一个基于LM优化方法的BP神经网络模型的示例代码:
```
import numpy as np
class LM_BPN:
def __init__(self, n_input, n_output, n_hidden, alpha=0.1, beta=1, mu=10):
self.n_input = n_input
self.n_output = n_output
self.n_hidden = n_hidden
self.alpha = alpha
self.beta = beta
self.mu = mu
self.weights_ih = np.random.randn(self.n_input, self.n_hidden)
self.weights_ho = np.random.randn(self.n_hidden, self.n_output)
def sigmoid(self, x):
return 1.0 / (1.0 + np.exp(-x))
def sigmoid_derivative(self, x):
return x * (1 - x)
def forward(self, input):
self.hidden = self.sigmoid(np.dot(input, self.weights_ih))
self.output = self.sigmoid(np.dot(self.hidden, self.weights_ho))
return self.output
def backward(self, input, target):
output_error = target - self.output
output_derivative = self.sigmoid_derivative(self.output)
hidden_error = np.dot(output_error * output_derivative, self.weights_ho.T)
hidden_derivative = self.sigmoid_derivative(self.hidden)
delta_weights_ho = self.alpha * self.hidden.T.dot(output_error * output_derivative) + self.beta * self.weights_ho
delta_weights_ih = self.alpha * input.T.dot(hidden_error * hidden_derivative) + self.beta * self.weights_ih
self.weights_ho += delta_weights_ho
self.weights_ih += delta_weights_ih
return np.sum(output_error ** 2)
def train(self, inputs, targets, epochs):
mse_history = []
for i in range(epochs):
mse = 0
for j in range(len(inputs)):
input = np.array(inputs[j], ndmin=2)
target = np.array(targets[j], ndmin=2)
self.forward(input)
mse += self.backward(input, target)
mse /= len(inputs)
mse_history.append(mse)
if mse < self.mu:
break
return mse_history
```
请注意,此代码是一个示例,您可能需要对其进行修改以适应您的具体情况。
阅读全文