pytorch nn.Linear(ninp, ntoken)
时间: 2023-07-22 22:55:49 浏览: 211
`nn.Linear(ninp, ntoken)`是一个PyTorch模块,它实现了一个线性层。它将输入张量的每个元素与一个权重矩阵相乘,然后加上一个偏置向量,最后输出一个新的张量。具体来说,这个模块将输入张量的形状视为`(batch_size, ninp)`,其中`batch_size`是输入的批量大小,`ninp`是输入张量的特征数。然后,它使用一个形状为`(ntoken, ninp)`的权重矩阵和一个形状为`(ntoken,)`的偏置向量,将输入张量的每个元素与权重矩阵相乘,并将偏置向量加到结果中。输出张量的形状是`(batch_size, ntoken)`,其中`ntoken`是输出张量的特征数。这个模块通常用于将输入张量映射到一个低维空间,例如将词向量映射到词汇表中的单词。
相关问题
torch.nn.transformer进行文本分类
可以使用torch.nn.transformer来进行文本分类,具体流程如下:
1. 准备数据集,将训练数据和测试数据转化为tensor格式。
2. 构建Transformer模型,可以使用PyTorch提供的预训练模型,也可以自行构建模型。
3. 定义损失函数,常用的有交叉熵损失函数。
4. 定义优化器,常用的有Adam优化器。
5. 进行模型训练,使用训练数据对模型进行训练,并在测试数据上进行测试。
6. 对模型进行评估,可以使用准确率、F1分数等指标进行评估。
下面是一个简单的代码示例,用于实现基于Transformer的文本分类:
```
import torch
import torch.nn as nn
import torch.optim as optim
from torchtext.datasets import IMDB
from torchtext.data import Field, LabelField, BucketIterator
# 将数据集转换为tensor格式
TEXT = Field(tokenize='spacy')
LABEL = LabelField(dtype=torch.float)
train_data, test_data = IMDB.splits(TEXT, LABEL)
TEXT.build_vocab(train_data, max_size=25000)
LABEL.build_vocab(train_data)
train_iterator, test_iterator = BucketIterator.splits(
(train_data, test_data), batch_size=64, device=torch.device('cuda'))
# 定义Transformer模型
class TransformerModel(nn.Module):
def __init__(self, ntoken, ninp, nhead, nhid, nlayers, dropout=0.5):
super(TransformerModel, self).__init__()
from torch.nn import TransformerEncoder, TransformerEncoderLayer
self.model_type = 'Transformer'
self.pos_encoder = PositionalEncoding(ninp, dropout)
encoder_layers = TransformerEncoderLayer(ninp, nhead, nhid, dropout)
self.transformer_encoder = TransformerEncoder(encoder_layers, nlayers)
self.encoder = nn.Embedding(ntoken, ninp)
self.ninp = ninp
self.decoder = nn.Linear(ninp, 1)
self.init_weights()
def generate_square_subsequent_mask(self, sz):
mask = (torch.triu(torch.ones(sz, sz)) == 1).transpose(0, 1)
mask = mask.float().masked_fill(mask == 0, float('-inf')).masked_fill(mask == 1, float(0.0))
return mask
def init_weights(self):
initrange = 0.1
self.encoder.weight.data.uniform_(-initrange, initrange)
self.decoder.bias.data.zero_()
self.decoder.weight.data.uniform_(-initrange, initrange)
def forward(self, src, src_mask):
src = self.encoder(src) * math.sqrt(self.ninp)
src = self.pos_encoder(src)
output = self.transformer_encoder(src, src_mask)
output = output.mean(dim=0)
output = self.decoder(output)
return output.squeeze()
# 定义损失函数和优化器
criterion = nn.BCEWithLogitsLoss()
model = TransformerModel(len(TEXT.vocab), 512, 8, 2048, 6, dropout=0.5).to(device)
optimizer = optim.Adam(model.parameters(), lr=0.0005)
# 进行模型训练
def train(model, iterator, optimizer, criterion):
model.train()
epoch_loss = 0
for batch in iterator:
optimizer.zero_grad()
src = batch.text
trg = batch.label
src_mask = model.generate_square_subsequent_mask(src.shape[0]).to(device)
output = model(src, src_mask)
loss = criterion(output, trg)
loss.backward()
optimizer.step()
epoch_loss += loss.item()
return epoch_loss / len(iterator)
# 在测试数据上进行测试
def evaluate(model, iterator, criterion):
model.eval()
epoch_loss = 0
with torch.no_grad():
for batch in iterator:
src = batch.text
trg = batch.label
src_mask = model.generate_square_subsequent_mask(src.shape[0]).to(device)
output = model(src, src_mask)
loss = criterion(output, trg)
epoch_loss += loss.item()
return epoch_loss / len(iterator)
N_EPOCHS = 10
best_valid_loss = float('inf')
for epoch in range(N_EPOCHS):
train_loss = train(model, train_iterator, optimizer, criterion)
valid_loss = evaluate(model, test_iterator, criterion)
if valid_loss < best_valid_loss:
best_valid_loss = valid_loss
torch.save(model.state_dict(), 'tut6-model.pt')
print(f'Epoch: {epoch+1:02} | Train Loss: {train_loss:.3f} | Val. Loss: {valid_loss:.3f}')
```
该示例中使用了IMDB数据集来进行文本分类,使用了PyTorch提供的Transformer模型,并使用Adam优化器进行模型训练。在进行模型训练时,使用了交叉熵损失函数来计算损失。最后,通过在测试数据上进行测试,评估了模型的性能。
pytorch调用transformer
以下是使用PyTorch调用Transformer的示例代码:
```python
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.nn import TransformerEncoder, TransformerEncoderLayer
# 定义TransformerEncoder模型
class TransformerModel(nn.Module):
def __init__(self, ntoken, ninp, nhead, nhid, nlayers, dropout=0.5):
super(TransformerModel, self).__init__()
self.model_type = 'Transformer'
self.src_mask = None
self.pos_encoder = PositionalEncoding(ninp, dropout)
encoder_layers = TransformerEncoderLayer(ninp, nhead, nhid, dropout)
self.transformer_encoder = TransformerEncoder(encoder_layers, nlayers)
self.encoder = nn.Embedding(ntoken, ninp)
self.ninp = ninp
self.decoder = nn.Linear(ninp, ntoken)
self.init_weights()
def _generate_square_subsequent_mask(self, sz):
mask = (torch.triu(torch.ones(sz, sz)) == 1).transpose(0, 1)
mask = mask.float().masked_fill(mask == 0, float('-inf')).masked_fill(mask == 1, float(0.0))
return mask
def init_weights(self):
initrange = 0.1
self.encoder.weight.data.uniform_(-initrange, initrange)
self.decoder.bias.data.zero_()
self.decoder.weight.data.uniform_(-initrange, initrange)
def forward(self, src):
if self.src_mask is None or self.src_mask.size(0) != len(src):
device = src.device
mask = self._generate_square_subsequent_mask(len(src)).to(device)
self.src_mask = mask
src = self.encoder(src) * math.sqrt(self.ninp)
src = self.pos_encoder(src)
output = self.transformer_encoder(src, self.src_mask)
output = self.decoder(output)
return output
```
在这个示例中,我们定义了一个名为TransformerModel的类,它继承自nn.Module。在__init__函数中,我们定义了Transformer Encoder的各个参数,包括输入和输出的维度,注意力头数,隐藏层维度,编码器层数等。在forward函数中,我们首先对输入进行编码,然后使用Transformer Encoder进行多头注意力机制和前向传播,最后输出结果。
阅读全文