def crop_pointcloud(data_crop, x_o, y_o, x_i, y_i, R_o, R_i, z_critical): K_o = R_o ** 2 / range_z K_i = R_i ** 2 / range_z for z in range(range_z): r_o = np.sqrt(z * K_o) data_layer = data_crop[:, :, z] d_o = np.sqrt(x_o ** 2 + y_o ** 2) d_i = np.sqrt(x_i ** 2 + y_i ** 2) if z < z_critical: r_i = 0 else: r_i = np.sqrt(z * K_i) data_crop[:, :, z] = np.where((d_o > r_o) | (d_i <= r_i), 0, data_layer) return data_crop data_crop = data[:, :, :400] range_x, range_y, range_z = data_crop.shape dx = 550 dy = 530 x, y = np.meshgrid(np.arange(range_x), np.arange(range_y)) x_o = x - range_x / 2 y_o = y - range_y / 2 x_i = x - dx y_i = y - dy z_critical = 50 R_o = 550 R_i = 200 data_crop = crop_pointcloud(data_crop, x_o, y_o, x_i, y_i, R_o, R_i, z_critical) data_crop = data_crop[:, :, 10:] 转C++ Eigen::Tensor<uint8_t, 3, Eigen::RowMajor>
时间: 2024-03-21 19:39:05 浏览: 104
以下是转换后的C++代码:
```c++
#include <Eigen/Core>
#include <unsupported/Eigen/CXX11/Tensor>
Eigen::Tensor<uint8_t, 3, Eigen::RowMajor> crop_pointcloud(
Eigen::Tensor<uint8_t, 3, Eigen::RowMajor>& data_crop,
Eigen::Tensor<float, 2>& x_o,
Eigen::Tensor<float, 2>& y_o,
Eigen::Tensor<float, 2>& x_i,
Eigen::Tensor<float, 2>& y_i,
float R_o,
float R_i,
int z_critical) {
int range_z = data_crop.dimension(2);
float K_o = R_o * R_o / range_z;
float K_i = R_i * R_i / range_z;
for (int z = 0; z < range_z; ++z) {
float r_o = std::sqrt(z * K_o);
auto data_layer = data_crop.chip(z, 2);
auto d_o = (x_o * x_o + y_o * y_o).sqrt();
auto d_i = (x_i * x_i + y_i * y_i).sqrt();
float r_i = (z < z_critical) ? 0 : std::sqrt(z * K_i);
data_crop.chip(z, 2) = (d_o > r_o || d_i <= r_i).select(0, data_layer);
}
return data_crop;
}
int main() {
Eigen::Tensor<uint8_t, 3, Eigen::RowMajor> data(100, 100, 500);
// Initialize data
Eigen::Tensor<uint8_t, 3, Eigen::RowMajor> data_crop = data.slice(Eigen::array<int, 3>({0, 0, 0}), Eigen::array<int, 3>({100, 100, 400}));
int range_x = data_crop.dimension(0);
int range_y = data_crop.dimension(1);
int range_z = data_crop.dimension(2);
Eigen::Tensor<float, 2> x(range_x, range_y);
Eigen::Tensor<float, 2> y(range_x, range_y);
for (int i = 0; i < range_x; ++i) {
for (int j = 0; j < range_y; ++j) {
x(i, j) = i - range_x / 2;
y(i, j) = j - range_y / 2;
}
}
Eigen::Tensor<float, 2> x_o = x;
Eigen::Tensor<float, 2> y_o = y;
Eigen::Tensor<float, 2> x_i = x - 550;
Eigen::Tensor<float, 2> y_i = y - 530;
int z_critical = 50;
float R_o = 550;
float R_i = 200;
data_crop = crop_pointcloud(data_crop, x_o, y_o, x_i, y_i, R_o, R_i, z_critical);
data_crop = data_crop.slice(Eigen::array<int, 3>({0, 0, 10}), Eigen::array<int, 3>({100, 100, 390}));
return 0;
}
```
注意,为了方便实现,我使用了Eigen库来处理多维数组。在C++中,需要手动遍历数组来初始化x和y,而在Python中,可以直接使用np.meshgrid来生成网格。此外,由于C++中没有np.where这个函数,我使用了Eigen的.select()函数来实现类似的功能。最后,注意将Python代码中的data_crop[:, :, 10:]转换为C++中的.slice()函数。
阅读全文