from transformers import BertTokenizer # 定义词汇表文件路径 vocab_file = "vocab.txt" # 读取词汇表 tokenizer = ()(vocab_file=vocab_file)

时间: 2023-12-03 18:42:40 浏览: 34
在代码中,你使用了 transformers 库中的 BertTokenizer 类来读取定义在 vocab_file 变量中的词汇表文件。但是在代码中,你没有指定 BertTokenizer 类的名称。如果你想要使用 BertTokenizer 类,应该把它的名称填入括号中。例如: ``` tokenizer = BertTokenizer(vocab_file=vocab_file) ``` 同时,你需要把 vocab_file 变量指定为词汇表文件的完整路径。
相关问题

import jieba import torch from transformers import BertTokenizer, BertModel, BertConfig # 自定义词汇表路径 vocab_path = "output/user_vocab.txt" count = 0 with open(vocab_path, 'r', encoding='utf-8') as file: for line in file: count += 1 user_vocab = count print(user_vocab) # 种子词 seed_words = ['姓名'] # 加载微博文本数据 text_data = [] with open("output/weibo_data.txt", "r", encoding="utf-8") as f: for line in f: text_data.append(line.strip()) print(text_data) # 加载BERT分词器,并使用自定义词汇表 tokenizer = BertTokenizer.from_pretrained('bert-base-chinese', vocab_file=vocab_path) config = BertConfig.from_pretrained("bert-base-chinese", vocab_size=user_vocab) # 加载BERT模型 model = BertModel.from_pretrained('bert-base-chinese', config=config, ignore_mismatched_sizes=True) seed_tokens = ["[CLS]"] + seed_words + ["[SEP]"] seed_token_ids = tokenizer.convert_tokens_to_ids(seed_tokens) seed_segment_ids = [0] * len(seed_token_ids) # 转换为张量,调用BERT模型进行编码 seed_token_tensor = torch.tensor([seed_token_ids]) seed_segment_tensor = torch.tensor([seed_segment_ids]) model.eval() with torch.no_grad(): seed_outputs = model(seed_token_tensor, seed_segment_tensor) seed_encoded_layers = seed_outputs[0] jieba.load_userdict('data/user_dict.txt') # 构建隐私词库 privacy_words = set() privacy_words_sim = set() for text in text_data: words = jieba.lcut(text.strip()) tokens = ["[CLS]"] + words + ["[SEP]"] token_ids = tokenizer.convert_tokens_to_ids(tokens) segment_ids = [0] * len(token_ids) # 转换为张量,调用BERT模型进行编码 token_tensor = torch.tensor([token_ids]) segment_tensor = torch.tensor([segment_ids]) model.eval() with torch.no_grad(): outputs = model(token_tensor, segment_tensor) encoded_layers = outputs[0] # 对于每个词,计算它与种子词的余弦相似度 for i in range(1, len(tokens) - 1): word = tokens[i] if word in seed_words: continue if len(word) <= 1: continue sim_scores = [] for j in range(len(seed_encoded_layers)): sim_scores.append(torch.cosine_similarity(seed_encoded_layers[j][0], encoded_layers[j][i], dim=0).item()) cos_sim = sum(sim_scores) / len(sim_scores) print(cos_sim, word) if cos_sim >= 0.5: privacy_words.add(word) privacy_words_sim.add((word, cos_sim)) print(privacy_words) # 输出隐私词库 with open("output/privacy_words.txt", "w", encoding="utf-8") as f1: for word in privacy_words: f1.write(word + '\n') with open("output/privacy_words_sim.txt", "w", encoding="utf-8") as f2: for word, cos_sim in privacy_words_sim: f2.write(word + "\t" + str(cos_sim) + "\n") 详细解释上述代码,包括这行代码的作用以及为什么要这样做?

这段代码是一个隐私词提取的程序,其目的是从微博文本数据中提取出可能包含隐私信息的词汇,并将其输出到文件中。 代码分为以下几个部分: 1.导入必要的库和模型 ``` import jieba import torch from transformers import BertTokenizer, BertModel, BertConfig ``` 其中,jieba是一个中文分词库,torch是PyTorch深度学习框架,transformers是一个自然语言处理模型库。 2.加载自定义的词汇表 ``` vocab_path = "output/user_vocab.txt" count = 0 with open(vocab_path, 'r', encoding='utf-8') as file: for line in file: count += 1 user_vocab = count print(user_vocab) ``` 这里的自定义词汇表是一些特定领域的词汇,例如医学领域或法律领域的专业术语。这些词汇不在通用的词汇表中,需要单独加载。 3.加载微博文本数据 ``` text_data = [] with open("output/weibo_data.txt", "r", encoding="utf-8") as f: for line in f: text_data.append(line.strip()) print(text_data) ``` 这里的微博文本数据是程序要处理的输入数据。 4.加载BERT分词器,并使用自定义词汇表 ``` tokenizer = BertTokenizer.from_pretrained('bert-base-chinese', vocab_file=vocab_path) config = BertConfig.from_pretrained("bert-base-chinese", vocab_size=user_vocab) ``` BERT分词器可以将中文文本转换为一系列的词汇编号,这里使用自定义词汇表来保证所有的词汇都可以被正确地转换。 5.加载BERT模型 ``` model = BertModel.from_pretrained('bert-base-chinese', config=config, ignore_mismatched_sizes=True) ``` BERT模型是一个预训练的深度学习模型,可以将文本编码为向量表示。 6.构建种子词库 ``` seed_words = ['姓名'] seed_tokens = ["[CLS]"] + seed_words + ["[SEP]"] seed_token_ids = tokenizer.convert_tokens_to_ids(seed_tokens) seed_segment_ids = [0] * len(seed_token_ids) seed_token_tensor = torch.tensor([seed_token_ids]) seed_segment_tensor = torch.tensor([seed_segment_ids]) model.eval() with torch.no_grad(): seed_outputs = model(seed_token_tensor, seed_segment_tensor) seed_encoded_layers = seed_outputs[0] ``` 种子词库是指一些已知的包含隐私信息的词汇,这里只有一个“姓名”。这部分代码将种子词转换为张量表示,并调用BERT模型进行编码。 7.构建隐私词库 ``` privacy_words = set() privacy_words_sim = set() for text in text_data: words = jieba.lcut(text.strip()) tokens = ["[CLS]"] + words + ["[SEP]"] token_ids = tokenizer.convert_tokens_to_ids(tokens) segment_ids = [0] * len(token_ids) token_tensor = torch.tensor([token_ids]) segment_tensor = torch.tensor([segment_ids]) model.eval() with torch.no_grad(): outputs = model(token_tensor, segment_tensor) encoded_layers = outputs[0] for i in range(1, len(tokens) - 1): word = tokens[i] if word in seed_words: continue if len(word) <= 1: continue sim_scores = [] for j in range(len(seed_encoded_layers)): sim_scores.append(torch.cosine_similarity(seed_encoded_layers[j][0], encoded_layers[j][i], dim=0).item()) cos_sim = sum(sim_scores) / len(sim_scores) print(cos_sim, word) if cos_sim >= 0.5: privacy_words.add(word) privacy_words_sim.add((word, cos_sim)) print(privacy_words) ``` 这部分代码是隐私词提取的核心部分,其流程如下: 1. 对每个文本进行分词。 2. 将分词后的词汇转换为张量表示,并调用BERT模型进行编码。 3. 对于每个词,计算它与种子词之间的余弦相似度。 4. 如果相似度大于等于0.5,则将该词添加到隐私词库中。 8.输出隐私词库 ``` with open("output/privacy_words.txt", "w", encoding="utf-8") as f1: for word in privacy_words: f1.write(word + '\n') with open("output/privacy_words_sim.txt", "w", encoding="utf-8") as f2: for word, cos_sim in privacy_words_sim: f2.write(word + "\t" + str(cos_sim) + "\n") ``` 这部分代码将提取出的隐私词输出到文件中,包括词汇本身和与种子词的相似度值。

BERT如何加载修改后的vocab.txt

在BERT中,可以通过修改vocab.txt文件来扩展或者更新词汇表。一般情况下,我们需要重新加载修改后的vocab.txt文件,以便BERT能够正确地处理新添加的词汇。下面是一些加载修改后的vocab.txt文件的方法: 1. 使用convert_vocab.py脚本:BERT提供了一个名为convert_vocab.py的脚本,它可以将新的vocab.txt文件转换为BERT模型所需的格式。具体来说,可以使用以下命令: ``` python convert_vocab.py --vocab_file=/path/to/new/vocab.txt --bert_config_file=/path/to/bert/config.json --output_dir=/path/to/output/dir ``` 其中,--vocab_file参数指定新的vocab.txt文件的路径,--bert_config_file参数指定BERT配置文件的路径,--output_dir参数指定输出目录的路径。执行成功后,将在输出目录中生成一个新的BERT模型文件夹,其中包含了使用新词汇表的BERT模型。 2. 直接加载新的vocab.txt文件:如果只是想临时使用新的vocab.txt文件,可以直接在代码中加载新的词汇表。具体来说,可以使用以下代码: ``` from transformers import BertTokenizer tokenizer = BertTokenizer.from_pretrained('/path/to/bert/model', do_lower_case=True, never_split=[UNK_TOKEN, SEP_TOKEN, CLS_TOKEN, MASK_TOKEN]) # 加载新的vocab.txt文件 tokenizer.add_tokens(['new_word_1', 'new_word_2'], special_tokens=True) # 使用新的词汇表编码文本 encoded_text = tokenizer.encode('new_word_1 and new_word_2') ``` 其中,BertTokenizer类的from_pretrained方法用于加载BERT模型和词汇表,do_lower_case参数指定是否进行小写处理,never_split参数指定不需要分割的特殊字符。使用add_tokens方法可以向词汇表中添加新的单词,special_tokens参数指定是否将这些单词添加为特殊字符。最后,可以使用encode方法将文本编码为BERT模型所需的格式。

相关推荐

最新推荐

recommend-type

野狗优化算法DOA MATLAB源码, 应用案例为函数极值求解以及优化svm进行分类,代码注释详细,可结合自身需求进行应用

野狗优化算法DOA MATLAB源码, 应用案例为函数极值求解以及优化svm进行分类,代码注释详细,可结合自身需求进行应用
recommend-type

2107381120 王孟丽 实验2 (1).docx

2107381120 王孟丽 实验2 (1).docx
recommend-type

JavaScript_其他Meta JS项目使用的工具库集合.zip

JavaScript
recommend-type

asm-4.2.jar

asm.jar的作用: 提到asm.jar的作用,那么最显著的莫过于计算机显示Android手机屏幕了;其次可以调整计算机上显示Android手机屏幕的大小。ASM 是一个Java字节码操纵框架。它可以直接以二进制形式动态地生成 stub 类或其他代理类,或者在装载时动态地修改类。ASM 提供类似于 BCEL 和 SERP 之类的工具包
recommend-type

node-v14.17.6-headers.tar.xz

Node.js,简称Node,是一个开源且跨平台的JavaScript运行时环境,它允许在浏览器外运行JavaScript代码。Node.js于2009年由Ryan Dahl创立,旨在创建高性能的Web服务器和网络应用程序。它基于Google Chrome的V8 JavaScript引擎,可以在Windows、Linux、Unix、Mac OS X等操作系统上运行。 Node.js的特点之一是事件驱动和非阻塞I/O模型,这使得它非常适合处理大量并发连接,从而在构建实时应用程序如在线游戏、聊天应用以及实时通讯服务时表现卓越。此外,Node.js使用了模块化的架构,通过npm(Node package manager,Node包管理器),社区成员可以共享和复用代码,极大地促进了Node.js生态系统的发展和扩张。 Node.js不仅用于服务器端开发。随着技术的发展,它也被用于构建工具链、开发桌面应用程序、物联网设备等。Node.js能够处理文件系统、操作数据库、处理网络请求等,因此,开发者可以用JavaScript编写全栈应用程序,这一点大大提高了开发效率和便捷性。 在实践中,许多大型企业和组织已经采用Node.js作为其Web应用程序的开发平台,如Netflix、PayPal和Walmart等。它们利用Node.js提高了应用性能,简化了开发流程,并且能更快地响应市场需求。
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

实现实时数据湖架构:Kafka与Hive集成

![实现实时数据湖架构:Kafka与Hive集成](https://img-blog.csdnimg.cn/img_convert/10eb2e6972b3b6086286fc64c0b3ee41.jpeg) # 1. 实时数据湖架构概述** 实时数据湖是一种现代数据管理架构,它允许企业以低延迟的方式收集、存储和处理大量数据。与传统数据仓库不同,实时数据湖不依赖于预先定义的模式,而是采用灵活的架构,可以处理各种数据类型和格式。这种架构为企业提供了以下优势: - **实时洞察:**实时数据湖允许企业访问最新的数据,从而做出更明智的决策。 - **数据民主化:**实时数据湖使各种利益相关者都可
recommend-type

可见光定位LED及其供电硬件具体型号,广角镜头和探测器,实验设计具体流程步骤,

1. 可见光定位LED型号:一般可使用5mm或3mm的普通白色LED,也可以选择专门用于定位的LED,例如OSRAM公司的SFH 4715AS或Vishay公司的VLMU3500-385-120。 2. 供电硬件型号:可以使用常见的直流电源供电,也可以选择专门的LED驱动器,例如Meanwell公司的ELG-75-C或ELG-150-C系列。 3. 广角镜头和探测器型号:一般可采用广角透镜和CMOS摄像头或光电二极管探测器,例如Omron公司的B5W-LA或Murata公司的IRS-B210ST01。 4. 实验设计流程步骤: 1)确定实验目的和研究对象,例如车辆或机器人的定位和导航。
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。