使用广义线性模型方法进行聚类的Matlab程序
时间: 2024-02-25 15:56:52 浏览: 50
广义神经网络的聚类算法(matlab实现).zip
以下是一个基于 Matlab 的广义线性模型聚类程序的示例:
```matlab
% 导入数据
data = readtable('data.csv');
x = data(:, 1:end-1);
y = data(:, end);
% 拟合广义线性模型
model = fitglm(x, y, 'Distribution', 'binomial', 'Link', 'logit');
% 提取系数矩阵
coef = model.Coefficients.Estimate;
% 计算距离矩阵
dist = pdist(coef);
% 进行聚类
clusters = linkage(dist, 'ward');
dendrogram(clusters);
% 提取聚类结果
num_clusters = 3;
idx = cluster(clusters, 'maxclust', num_clusters);
% 可视化聚类结果
scatter3(x(:, 1), x(:, 2), x(:, 3), [], idx, 'filled');
xlabel('x1');
ylabel('x2');
zlabel('x3');
```
其中,`data.csv` 是用于聚类的数据集,`x` 是自变量矩阵,`y` 是因变量向量。`fitglm` 函数用于拟合广义线性模型,其中 `Distribution` 参数指定分布类型,`Link` 参数指定连接函数。`pdist` 函数用于计算距离矩阵,`linkage` 函数用于进行聚类,`cluster` 函数用于提取聚类结果。最后,使用 `scatter3` 函数可视化聚类结果。
阅读全文