hidden_rep, cls_head = model(token_ids, attention_mask=attention_mask)
时间: 2023-06-08 21:07:12 浏览: 96
好的,你的第一个问题是关于ChitGPT的hidden_rep和cls_head的输出。这个问题涉及到ChitGPT的内部机制,hidden_rep是指ChitGPT在经过输入后得到的隐层表示,cls_head是指ChitGPT中用于分类任务的头部部分的输出。这两个输出可以用于各种自然语言处理任务,例如文本分类、语言模型预测等等。希望能够解答你的问题。
相关问题
hidden_rep, cls_head = model(token_ids, attention_mask=attention_mask)。hidden_rep内容
是模型对输入的token_ids进行编码后得到的隐藏状态。它将被用作生成下一个词语的依据。而cls_head是模型对输入的token_ids中的第一个标记(通常是[CLS])进行编码后得到的特殊的向量,它用于分类和序列级任务。
def forward(self, g, feat): with g.local_scope(): g.ndata['h'] = feat g.update_all(self.message_func1, fn.mean(msg='m', out='h')) # g.update_all(self.message_func2, fn.mean(msg='m', out='h')) node_rep = g.ndata['h'] if self.layer_norm: node_rep = self.layer_norm_weight(node_rep) if self.bias: node_rep = node_rep + self.h_bias if self.self_loop: h = self.node_ME(feat, feat) node_rep = node_rep + h if self.activation: node_rep = self.activation(node_rep) node_rep = self.dropout(node_rep) return node_rep
这段代码是 GNNLayer 中的 `forward` 方法的实现。
`` 方法用于执行 GNNLayer 的前向计算。首先,通过 `g.local_scope()` 创建一个本地作用域以确保计算的中结果不会影响其他计算。然后,将输入特征 `feat` 存储在图 `g` 的节点特征字典 `ndata` 中的键 `'h'` 下。
接下来,使用 `g.update_all(self.message_func1, fn.mean(msg='m', out='h'))` 对图 `g` 中的所有边进行消息传递,并使用 `mean` 函数对接收到的消息进行聚合,然后将结果存储在节点特征字典 `ndata` 的键 `'h'` 中。
随后,根据需要对节点特征进行一系列操作。如果 `layer_norm` 为真,则对节点特征进行层归一化操作。如果 `bias` 为真,则对节点特征添加偏置项。如果 `self_loop` 为真,则使用 `node_ME` 对输入特征进行记忆编码,并将结果与节点特征相加。接着,如果提供了激活函数,则对节点特征进行激活操作。最后,对节点特征进行 `dropout` 操作,并将结果返回。
这段代码展示了 GNNLayer 中前向计算的具体实现。在前向计算过程中,首先进行消息传递和聚合操作,然后根据需要对节点特征进行一系列的转换和操作,最终得到更新后的节点表示。这个方法用于更新图神经网络中每一层节点的表示,并将结果传递给下一层进行进一步的计算。
阅读全文
相关推荐
![rar](https://img-home.csdnimg.cn/images/20241231044955.png)
![zip](https://img-home.csdnimg.cn/images/20241231045053.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)