matlab 自动驾驶仿真案例 代码

时间: 2023-08-06 14:04:39 浏览: 45
以下是一个基于 MATLAB 的自动驾驶仿真案例代码: ``` % 定义车辆控制器 function [throttle, brake, steering] = VehicleController(vehicleState, targetState) % 控制器参数 Kp_speed = 0.3; Ki_speed = 0.05; Kp_heading = 0.6; Ki_heading = 0.1; % 计算车辆速度误差 speed_error = targetState.velocity - vehicleState.velocity; % 计算车辆速度控制量 throttle = Kp_speed * speed_error + Ki_speed * sum(speed_error); % 计算车辆转向角度误差 heading_error = targetState.heading - vehicleState.heading; % 将转向角度误差限制在 -pi 和 pi 之间 heading_error = mod(heading_error + pi, 2*pi) - pi; % 计算车辆转向控制量 steering = Kp_heading * heading_error + Ki_heading * sum(heading_error); % 将转向控制量限制在 -1 和 1 之间 steering = max(-1, min(steering, 1)); % 如果车辆速度小于 0,应该刹车 if vehicleState.velocity < 0 brake = abs(throttle); throttle = 0; else brake = 0; end end % 定义车辆动力学模型 function vehicleState = VehicleModel(vehicleState, throttle, brake, steering, dt) % 车辆参数 mass = 1500; % 质量 kg inertia = 3000; % 转动惯量 kg*m^2 Cf = 100000; % 前轮侧向刚度 N/rad Cr = 100000; % 后轮侧向刚度 N/rad lf = 1.5; % 前轴到质心的距离 m lr = 1.5; % 后轴到质心的距离 m % 计算车辆速度 vx = vehicleState.velocity; % 计算车辆前进方向和侧向方向速度 vy = vx * tan(steering); % 计算车辆加速度 Ff = Cf * steering; Fr = Cr * atan2(vy, vx); Ft = (throttle - brake * sign(vx)) * 5000; a = (Ff + Fr + Ft) / mass; % 计算车辆角加速度 Mz = lf * Cf * steering - lr * Cr * atan2(vy, vx); alpha = Mz / inertia; % 更新车辆状态 vehicleState.x = vehicleState.x + vx * cos(vehicleState.heading) * dt; vehicleState.y = vehicleState.y + vx * sin(vehicleState.heading) * dt; vehicleState.heading = vehicleState.heading + vehicleState.angularVelocity * dt; vehicleState.angularVelocity = vehicleState.angularVelocity + alpha * dt; vehicleState.velocity = vehicleState.velocity + a * dt; end % 定义目标点生成器 function targetState = TargetGenerator(t) % 生成一个周期为 10 秒的前进方向速度为 10 m/s 的目标点 targetState.x = 1000 * (1 - cos(t/10*2*pi)); targetState.y = 1000 * sin(t/10*2*pi); targetState.heading = atan2(diff(targetState.y), diff(targetState.x)); targetState.velocity = 10; end % 初始化车辆状态 vehicleState.x = 0; vehicleState.y = 0; vehicleState.heading = 0; vehicleState.velocity = 0; vehicleState.angularVelocity = 0; % 模拟车辆行驶过程 t = 0; dt = 0.1; while t < 100 % 生成目标点 targetState = TargetGenerator(t); % 执行车辆控制器 [throttle, brake, steering] = VehicleController(vehicleState, targetState); % 更新车辆状态 vehicleState = VehicleModel(vehicleState, throttle, brake, steering, dt); % 绘制车辆和目标点 plot(vehicleState.x, vehicleState.y, 'ro'); hold on; plot(targetState.x, targetState.y, 'r*'); hold off; axis equal; axis([-2000 2000 -2000 2000]); grid on; drawnow; % 更新时间 t = t + dt; end ``` 这个代码实现了一个简单的自动驾驶示例,包括车辆控制器、车辆动力学模型和目标点生成器。在模拟过程中,车辆根据当前状态和目标点生成器生成的目标点计算出控制量,通过车辆动力学模型模拟车辆行驶过程,并将车辆和目标点绘制在图像上,以便观察仿真结果。

相关推荐

最新推荐

recommend-type

carsim和matlab的联合仿真.docx

该文档,简单的介绍了一下carsim和matlab怎么进行仿真,怎么将carsim的模型文件导入carsim和在连接到matlab进行仿真,新手入门知识简介。
recommend-type

脉冲压缩处理MATLAB仿真实验报告

该文件从时域和频域分析了脉冲压缩的实现原理,以及从时域和频域对脉冲压缩进行仿真,分析其压缩的信号参数。
recommend-type

基于Matlab/Simulink的变频系统仿真

在Simulink(7.04)工具箱中有电力系统SimPowerSystem的工具箱,为变频器仿真提供了几乎所需的全部元器件,所以使用它们很容易进行仿真。
recommend-type

电子扫描阵列MATLAB®建模与仿真源代码

电子扫描阵列MATLAB®建模与仿真源代码,包括了该书的所有MATLAB代码,很有借鉴价值
recommend-type

用fft算法实现相关的MATLAB仿真

用fft算法实现相关的MATLAB仿真,该方法易于在FPGA上实现相关算法,比直接用相乘来得简单,而且但相关点数越多计算量相对而言比直接求解减少
recommend-type

RTL8188FU-Linux-v5.7.4.2-36687.20200602.tar(20765).gz

REALTEK 8188FTV 8188eus 8188etv linux驱动程序稳定版本, 支持AP,STA 以及AP+STA 共存模式。 稳定支持linux4.0以上内核。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

:YOLOv1目标检测算法:实时目标检测的先驱,开启计算机视觉新篇章

![:YOLOv1目标检测算法:实时目标检测的先驱,开启计算机视觉新篇章](https://img-blog.csdnimg.cn/img_convert/69b98e1a619b1bb3c59cf98f4e397cd2.png) # 1. 目标检测算法概述 目标检测算法是一种计算机视觉技术,用于识别和定位图像或视频中的对象。它在各种应用中至关重要,例如自动驾驶、视频监控和医疗诊断。 目标检测算法通常分为两类:两阶段算法和单阶段算法。两阶段算法,如 R-CNN 和 Fast R-CNN,首先生成候选区域,然后对每个区域进行分类和边界框回归。单阶段算法,如 YOLO 和 SSD,一次性执行检
recommend-type

info-center source defatult

这是一个 Cisco IOS 命令,用于配置 Info Center 默认源。Info Center 是 Cisco 设备的日志记录和报告工具,可以用于收集和查看设备的事件、警报和错误信息。该命令用于配置 Info Center 默认源,即设备的默认日志记录和报告服务器。在命令行界面中输入该命令后,可以使用其他命令来配置默认源的 IP 地址、端口号和协议等参数。
recommend-type

c++校园超市商品信息管理系统课程设计说明书(含源代码) (2).pdf

校园超市商品信息管理系统课程设计旨在帮助学生深入理解程序设计的基础知识,同时锻炼他们的实际操作能力。通过设计和实现一个校园超市商品信息管理系统,学生掌握了如何利用计算机科学与技术知识解决实际问题的能力。在课程设计过程中,学生需要对超市商品和销售员的关系进行有效管理,使系统功能更全面、实用,从而提高用户体验和便利性。 学生在课程设计过程中展现了积极的学习态度和纪律,没有缺勤情况,演示过程流畅且作品具有很强的使用价值。设计报告完整详细,展现了对问题的深入思考和解决能力。在答辩环节中,学生能够自信地回答问题,展示出扎实的专业知识和逻辑思维能力。教师对学生的表现予以肯定,认为学生在课程设计中表现出色,值得称赞。 整个课程设计过程包括平时成绩、报告成绩和演示与答辩成绩三个部分,其中平时表现占比20%,报告成绩占比40%,演示与答辩成绩占比40%。通过这三个部分的综合评定,最终为学生总成绩提供参考。总评分以百分制计算,全面评估学生在课程设计中的各项表现,最终为学生提供综合评价和反馈意见。 通过校园超市商品信息管理系统课程设计,学生不仅提升了对程序设计基础知识的理解与应用能力,同时也增强了团队协作和沟通能力。这一过程旨在培养学生综合运用技术解决问题的能力,为其未来的专业发展打下坚实基础。学生在进行校园超市商品信息管理系统课程设计过程中,不仅获得了理论知识的提升,同时也锻炼了实践能力和创新思维,为其未来的职业发展奠定了坚实基础。 校园超市商品信息管理系统课程设计的目的在于促进学生对程序设计基础知识的深入理解与掌握,同时培养学生解决实际问题的能力。通过对系统功能和用户需求的全面考量,学生设计了一个实用、高效的校园超市商品信息管理系统,为用户提供了更便捷、更高效的管理和使用体验。 综上所述,校园超市商品信息管理系统课程设计是一项旨在提升学生综合能力和实践技能的重要教学活动。通过此次设计,学生不仅深化了对程序设计基础知识的理解,还培养了解决实际问题的能力和团队合作精神。这一过程将为学生未来的专业发展提供坚实基础,使其在实际工作中能够胜任更多挑战。