pytorchsinc卷积代码
时间: 2023-07-02 07:08:22 浏览: 118
pytorch 自定义卷积核进行卷积操作方式
5星 · 资源好评率100%
下面是一个使用 PyTorch 实现的 Sinc 卷积的代码示例:
```python
import torch
import torch.nn as nn
import torch.nn.functional as F
class SincConv1d(nn.Module):
def __init__(self, in_channels, out_channels, kernel_size, sample_rate):
super().__init__()
self.in_channels = in_channels
self.out_channels = out_channels
self.kernel_size = kernel_size
self.sample_rate = sample_rate
if kernel_size % 2 == 0:
raise ValueError('Kernel size must be odd')
self.pad = (kernel_size - 1) // 2
self.sinc = nn.Parameter(torch.zeros((out_channels, in_channels, kernel_size)))
self.half = kernel_size % 2 == 0
self.reset_parameters()
def reset_parameters(self):
self.sinc.data[:, :, self.kernel_size // 2] = 1
lp_cutoff = 0.45 * self.sample_rate
self.sinc.data = torch.tensor([self.sinc_window(i, lp_cutoff) for i in range(self.kernel_size)])
def sinc_window(self, i, cutoff):
sinc = torch.sin(torch.tensor(2 * cutoff * (i - self.kernel_size // 2)).float()) / (i - self.kernel_size // 2)
if i == self.kernel_size // 2:
sinc = 2 * cutoff
window = 0.54 - 0.46 * torch.cos(torch.tensor(2 * i * np.pi / self.kernel_size)).float()
return sinc * window
def forward(self, x):
x = F.pad(x, (self.pad, self.pad), mode='reflect')
self.sinc.data[:, :, self.kernel_size // 2] = 1
if self.half:
self.sinc.data[:, :, self.kernel_size // 2 + 1:] = 0
x = F.conv1d(x, self.sinc, stride=1, padding=0, dilation=1, groups=self.in_channels)
return x
```
这个代码实现了一个 Sinc 卷积层,可以在神经网络中使用。你可以通过调整 `in_channels`、`out_channels`、`kernel_size` 和 `sample_rate` 参数来创建不同的 Sinc 卷积层。
阅读全文