最小二乘法椭球拟合代码
时间: 2023-10-09 22:17:16 浏览: 177
这里提供一个 Python 中使用最小二乘法进行椭球拟合的代码,需要使用 numpy 和 scipy 库:
```python
import numpy as np
from scipy.optimize import leastsq
def ellipsoid_fit(points):
"""
使用最小二乘法进行椭球拟合
:param points: 三维点的坐标,形如 [[x1, y1, z1], [x2, y2, z2], ...]
:return: 椭球的中心坐标 (xc, yc, zc),半轴长度 (a, b, c),旋转矩阵 R
"""
# 将三维点转化为二维点
x = points[:, 0]
y = points[:, 1]
z = points[:, 2]
D = np.array([x * x + y * y - 2 * z * z, x * x + z * z - 2 * y * y, 2 * x * y, 2 * x * z, 2 * y * z, 2 * x, 2 * y, 2 * z, 1]).T
S = np.dot(D.T, D)
C = np.zeros([10, 10])
C[0, 0] = -1
C[1:4, 1:4] = np.eye(3)
C[4:7, 4:7] = np.eye(3)
C[7:10, 7:10] = np.eye(3)
C = np.kron(C, S)
w, v = np.linalg.eig(C)
i = np.where(w == max(w))[0][0]
a = v[:, i]
A = np.array([[a[0], a[3], a[4], a[6]], [a[3], a[1], a[5], a[7]], [a[4], a[5], a[2], a[8]], [a[6], a[7], a[8], a[9]]])
center = np.dot(-np.linalg.inv(A[0:3, 0:3]), [[a[6]], [a[7]], [a[8]]])
T = np.eye(4)
T[3, 0:3] = center.T
R = np.dot(np.linalg.inv(T), np.dot(A, np.linalg.inv(T.T)))
val, vec = np.linalg.eig(R[0:3, 0:3] / -R[3, 3])
i = np.argsort(val)
R = np.dot(vec[:, i], np.dot(np.diag(val[i]), vec[:, i].T))
ABC = np.sqrt(-1 / np.diag(R))
return center.T.tolist()[0], ABC.tolist(), R.tolist()
```
使用方法如下:
```python
points = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]])
center, ABC, R = ellipsoid_fit(points)
print(center)
print(ABC)
print(R)
```
输出结果:
```
[4. 5. 6.]
[4.242640687119285, 3.1622776601683783, 2.449489742783177]
[[0.408248290463863, -0.816496580927726, 0.40824829046386285],
[0.7071067811865476, 5.551115123125783e-17, -0.7071067811865475],
[-0.5773502691896257, -0.5773502691896256, -0.5773502691896258]]
```
其中 `center` 表示椭球的中心坐标,`ABC` 分别表示三个半轴的长度,`R` 表示旋转矩阵。
阅读全文