c语言编写基于最小二乘的椭球拟合算法
时间: 2024-03-16 19:41:15 浏览: 307
基于最小二乘法的椭球拟合算法可以通过以下步骤实现:
1. 定义椭球拟合的模型,例如三维椭球。
2. 选择拟合数据点,将其表示为(x,y,z)的形式。
3. 根据模型的不同,选择合适的拟合函数,例如对于三维椭球可以使用x^2/a^2 + y^2/b^2 + z^2/c^2 = 1的形式。
4. 利用最小二乘法求解拟合函数的系数,即a、b和c。
5. 根据拟合函数和系数,得到拟合椭球。
以下是一个基于最小二乘法实现椭球拟合的代码示例:
```c
#include <stdio.h>
#include <stdlib.h>
#include <math.h>
int main()
{
int n = 9; // 数据点个数
double x[9] = {1.0, 1.0, -1.0, -1.0, 0.0, 0.0, 0.0, 0.0, 0.0}; // x坐标
double y[9] = {0.0, 0.0, 0.0, 0.0, 1.0, 1.0, -1.0, -1.0, 0.0}; // y坐标
double z[9] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.0}; // z坐标
double sum_x = 0, sum_y = 0, sum_z = 0;
double sum_x2 = 0, sum_y2 = 0, sum_z2 = 0;
double sum_x3 = 0, sum_y3 = 0, sum_z3 = 0;
double sum_xy = 0, sum_xz = 0, sum_yz = 0;
double sum_x2y = 0, sum_xy2 = 0, sum_x2z = 0, sum_xz2 = 0, sum_y2z = 0, sum_yz2 = 0;
double a, b, c;
for (int i = 0; i < n; i++) {
sum_x += x[i];
sum_y += y[i];
sum_z += z[i];
sum_x2 += x[i] * x[i];
sum_y2 += y[i] * y[i];
sum_z2 += z[i] * z[i];
sum_x3 += x[i] * x[i] * x[i];
sum_y3 += y[i] * y[i] * y[i];
sum_z3 += z[i] * z[i] * z[i];
sum_xy += x[i] * y[i];
sum_xz += x[i] * z[i];
sum_yz += y[i] * z[i];
sum_x2y += x[i] * x[i] * y[i];
sum_xy2 += x[i] * y[i] * y[i];
sum_x2z += x[i] * x[i] * z[i];
sum_xz2 += x[i] * z[i] * z[i];
sum_y2z += y[i] * y[i] * z[i];
sum_yz2 += y[i] * z[i] * z[i];
}
double A[6][6] = {
{sum_x2, sum_xy, sum_xz, sum_x, sum_y, sum_z},
{sum_xy, sum_y2, sum_yz, sum_x, sum_y, sum_z},
{sum_xz, sum_yz, sum_z2, sum_x, sum_y, sum_z},
{sum_x, sum_x, sum_x, n, 0, 0},
{sum_y, sum_y, sum_y, 0, n, 0},
{sum_z, sum_z, sum_z, 0, 0, n},
};
double B[6] = {
-sum_x3 - sum_xy2 - sum_xz2,
-sum_y3 - sum_x2y - sum_yz2,
-sum_z3 - sum_x2z - sum_y2z,
-sum_x,
-sum_y,
-sum_z,
};
double a_matrix[6][6], b_matrix[6];
int i, j, k, m;
double max, t;
for (i = 0; i < 6; i++) {
for (j = 0; j < 6; j++) {
a_matrix[i][j] = A[i][j];
}
b_matrix[i] = B[i];
}
for (j = 0; j < 6; j++) {
max = 0;
m = j;
for (i = j; i < 6; i++) {
if (fabs(a_matrix[i][j]) > max) {
max = fabs(a_matrix[i][j]);
m = i;
}
}
if (m != j) {
for (k = j; k < 6; k++) {
t = a_matrix[j][k];
a_matrix[j][k] = a_matrix[m][k];
a_matrix[m][k] = t;
}
t = b_matrix[j];
b_matrix[j] = b_matrix[m];
b_matrix[m] = t;
}
if (a_matrix[j][j] == 0) {
printf("Cannot fit an ellipsoid\n");
return 0;
}
for (i = j + 1; i < 6; i++) {
t = a_matrix[i][j] / a_matrix[j][j];
for (k = j + 1; k < 6; k++) {
a_matrix[i][k] -= t * a_matrix[j][k];
}
b_matrix[i] -= t * b_matrix[j];
}
}
for (j = 5; j >= 0; j--) {
t = 0;
for (k = j + 1; k < 6; k++) {
t += a_matrix[j][k] * b_matrix[k];
}
b_matrix[j] = (b_matrix[j] - t) / a_matrix[j][j];
}
a = sqrt(fabs(1.0 / b_matrix[0]));
b = sqrt(fabs(1.0 / b_matrix[1]));
c = sqrt(fabs(1.0 / b_matrix[2]));
printf("The ellipsoid is: x^2/%.2f + y^2/%.2f + z^2/%.2f = 1\n", a * a, b * b, c * c);
return 0;
}
```
该代码实现了基于最小二乘法的椭球拟合,其中x、y和z分别表示数据点的三个坐标,n表示数据点的个数。最终输出的是拟合函数x^2/a^2 + y^2/b^2 + z^2/c^2 = 1的系数。
阅读全文