编写应用程序将数组中的数据进行排序,然后使用折半法判断用户输入的一个整数是否在数组中用java语言

时间: 2023-05-23 11:00:51 浏览: 29
可以使用Java内置的Arrays.sort()方法对数组进行排序,然后再使用Arrays.binarySearch()方法进行折半查找。以下是示例代码: ``` import java.util.Arrays; public class SortAndBinarySearch { public static void main(String[] args) { int[] arr = {5, 2, 9, 1, 6, 3}; Arrays.sort(arr); // 对数组进行排序 int searchValue = 6; // 用户输入的整数 int index = Arrays.binarySearch(arr, searchValue); // 在排序后的数组中查找 if (index >= 0) { System.out.println(searchValue + " 在数组中的下标为 " + index); } else { System.out.println(searchValue + " 不在数组中"); } } } ``` 请注意,这只是一种实现方式,还有许多其他的排序和查找算法可以使用。
相关问题

1、编写程序,在程序中初始化一个有序整数数组;从键盘输入一个整数,在该数组中用折半查找,输出查找结果(下标)。

以下是Python语言的程序示例: ```python # 初始化有序整数数组 arr = [1, 3, 5, 7, 9, 11, 13, 15, 17, 19] # 从键盘输入要查找的整数 target = int(input("请输入要查找的整数:")) # 折半查找 left = right = len(arr) - 1 while left <= right: mid = (left + right) // 2 if arr[mid] == target: print("查找结果:", mid) break elif arr[mid] < target: left = mid + 1 else: right = mid - 1 else: print("查找结果:未找到") ``` 程序首先初始化了一个有序整数数组,然后从键盘输入要查找的整数。接着进行折半查找,如果找到了目标元素,则输出其下标;如果未找到,则输出未找到的提示信息。

输入一个整数,在一个有序数列中使用折半查找法查找是否存在该整数。

折半查找法是一种在有序数列中查找特定元素的算法。它的基本思想是将待查找的区间不断缩小,直到找到目标元素或者确定目标元素不存在为止。具体实现时,每次将待查找区间的中间元素与目标元素进行比较,如果相等则返回该元素的位置,如果目标元素小于中间元素,则在左半部分继续查找,否则在右半部分继续查找。这样每次查找都可以将待查找区间缩小一半,因此时间复杂度为O(log n)。

相关推荐

### 回答1: 折半查找法也称为二分查找法,它是一种高效的查找算法。 下面是使用折半查找法在已经排好序的数组中查找特定元素的步骤: 1. 确定数组的左、右下标,初始时左下标为0,右下标为数组长度减1。 2. 计算中间位置的下标,即 (左下标 + 右下标) / 2。 3. 如果中间位置的元素等于目标值,则返回该位置的下标。 4. 如果中间位置的元素大于目标值,则目标值可能在左半部分,将右下标移动到中间位置减1。 5. 如果中间位置的元素小于目标值,则目标值可能在右半部分,将左下标移动到中间位置加1。 6. 重复步骤2到步骤5,直到左下标大于右下标,此时目标值不存在于数组中,返回-1。 因此,如果要在已经排好序的包含15个元素的数组中查找一个元素的下标,可以按照以上步骤进行操作,直到找到目标元素的下标或者确认该元素不在数组中。好的,以下是用中文回答您的问题: 这个问题可以使用折半查找法来解决。折半查找法是一种高效的查找算法,适用于已排序的数组。 具体实现方法如下: 1. 将数组按照从小到大的顺序排序。 2. 定义变量 low 和 high 分别表示数组的起始下标和结束下标。 3. 循环执行以下操作: a. 将中间位置的下标 mid 计算出来,即 mid = (low + high) // 2。 b. 如果要查找的数等于数组中下标为 mid 的数,返回 mid。 c. 如果要查找的数小于数组中下标为 mid 的数,说明要查找的数在数组的左半部分,将 high 设为 mid - 1。 d. 如果要查找的数大于数组中下标为 mid 的数,说明要查找的数在数组的右半部分,将 low 设为 mid + 1。 4. 如果循环结束时还没有找到要查找的数,说明该数不存在于数组中,返回 -1。 下面是实现该算法的 Python 代码: def binary_search(nums, target): low, high = 0, len(nums) - 1 while low <= high: mid = (low + high) // 2 if nums[mid] == target: return mid elif nums[mid] > target: high = mid - 1 else: low = mid + 1 return -1 您可以将要查找的数和数组作为函数的参数进行调用,函数将返回要查找的数在数组中的下标,如果不存在则返回 -1。 ### 回答2: 折半查找法又称二分查找法,是一种高效的查找算法,适用于有序的数组。 假设给定的数组为arr,要查找的数为num,数组中元素个数为n。则折半查找法的基本思路如下: 1. 取数组中间位置mid,比较arr[mid]和num的大小关系 2. 如果arr[mid]等于num,直接返回mid,查找成功; 3. 如果arr[mid]大于num,则在左侧数组中继续查找(由于数组已经按小到大排序,因此左侧数组的最后一个元素下标为mid-1,右侧数组的第一个元素下标为mid+1); 4. 如果arr[mid]小于num,则在右侧数组中继续查找; 5. 重复1-4步,直到找到num或者左侧数组下标大于右侧数组下标,此时查找失败。 根据上述思路,可以设计下面的算法: int binarySearch(int arr[], int n, int num) { int left = 0, right = n - 1; while(left <= right) { int mid = (left + right) / 2; if(arr[mid] == num) { return mid; } if(arr[mid] > num) { right = mid - 1; } else { left = mid + 1; } } return -1; // 查找失败,返回-1 } 其中,n为数组元素个数,left和right为数组左右边界。 假设有15个数存放在数组arr中,并已经按小到大排序,要查找的数为num,则可以直接调用binarySearch函数找到num在arr数组中的下标。 示例代码如下: #include <stdio.h> int binarySearch(int arr[], int n, int num); int main() { int arr[15] = {1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29}; int n = 15, num, pos; printf("请输入要查找的数:"); scanf("%d", &num); pos = binarySearch(arr, n, num); if(pos == -1) { printf("查找失败,数%d不在数组中\n", num); } else { printf("数%d在数组中的下标为%d\n", num, pos); } return 0; } int binarySearch(int arr[], int n, int num) { int left = 0, right = n - 1; while(left <= right) { int mid = (left + right) / 2; if(arr[mid] == num) { return mid; } if(arr[mid] > num) { right = mid - 1; } else { left = mid + 1; } } return -1; // 查找失败,返回-1 } ### 回答3: 折半查找,也称二分查找,是一种高效而简单的查找算法。它的基本思想是:将有序表分成两个部分,然后查找表中间位置的元素,如果该元素值与查找关键字相等,就查找成功;否则根据它与查找关键字的大小关系,确定下一步查找的区间,不断缩小区间范围,直到查找到关键字或查找区间为空为止。 按照题目中的要求,我们可以先定义一个包含15个数的数组,并将它按从小到大的顺序排好。 接着,我们可以编写一个函数实现折半查找的功能。该函数接受两个参数:要查找的数和待查找的数组。具体实现过程如下: 1. 初始化左边界 left 和右边界 right,分别为 0 和 14。 2. 如果 left > right,说明数组中没有要查找的数,返回 -1。 3. 计算中间元素的下标 mid,mid = (left + right) / 2。 4. 如果中间元素的值等于要查找的数,返回 mid。 5. 如果中间元素的值大于要查找的数,则在左半部分继续查找,将右边界缩小为 mid-1。 6. 如果中间元素的值小于要查找的数,则在右半部分继续查找,将左边界增大为 mid+1。 7. 重复执行步骤 2 - 6,直到找到要查找的数或数组为空。 最终,我们可以在主函数中调用该函数,输入要查找的数,并输出它在数组中的下标位置。 总的来说,折半查找法是一种效率较高的查找算法,可以在很短的时间内找到数组中的目标元素。但是它有一个前提条件,就是数组必须是排好序的。因此,在使用该算法时,我们必须注意先对数组进行排序。
### 回答1: 首先,我们需要先读取从键盘输入的整数,可以使用 scanf 函数实现: c int num; scanf("%d", &num); 然后,我们需要定义一个整型一维数组 a[20],并对其进行初始化。这里我们假设数组已经初始化完成。 接下来,我们可以使用折半查找法来查找该数在数组中的位置。折半查找法的基本思想是:将数组分成两半,判断要查找的数在哪一半中,然后继续在该半中进行查找,直到找到该数或者确定该数不在数组中为止。 具体实现如下: c int low = , high = 19, mid; while (low <= high) { mid = (low + high) / 2; if (a[mid] == num) { printf("该数在数组中的位置是:%d\n", mid + 1); break; } else if (a[mid] < num) { low = mid + 1; } else { high = mid - 1; } } if (low > high) { printf("no found\n"); } 在上面的代码中,我们首先定义了三个变量:low、high 和 mid,分别表示数组的最小下标、最大下标和中间下标。然后,我们使用 while 循环进行查找,直到找到该数或者确定该数不在数组中为止。 在每次循环中,我们首先计算出中间下标 mid,然后判断要查找的数 num 是否等于 a[mid]。如果相等,说明找到了该数,输出该数在数组中的位置,并使用 break 语句跳出循环。 如果 a[mid] 小于 num,说明要查找的数在右半部分,因此将 low 更新为 mid + 1;否则,说明要查找的数在左半部分,因此将 high 更新为 mid - 1。 最后,如果 low 大于 high,说明该数不在数组中,输出“no found”。 完整代码如下: c #include <stdio.h> int main() { int a[20] = {1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39}; int num; scanf("%d", &num); int low = , high = 19, mid; while (low <= high) { mid = (low + high) / 2; if (a[mid] == num) { printf("该数在数组中的位置是:%d\n", mid + 1); break; } else if (a[mid] < num) { low = mid + 1; } else { high = mid - 1; } } if (low > high) { printf("no found\n"); } return ; } ### 回答2: 首先,我们需要从键盘输入一个整数。可以使用scanf()函数实现,如下所示: int num; scanf("%d", &num); 然后,我们需要定义一个整型一维数组a,大小为20,如下所示: int a[20]; 接下来,我们需要从键盘输入20个整数,将它们存储到a数组中。可以使用for循环和scanf()函数实现,如下所示: for(int i=0; i<20; i++){ scanf("%d", &a[i]); } 现在,我们已经将20个整数存储到了a数组中。接下来,我们需要使用折半查找法找出输入的整数在a数组中的位置。折半查找法是一种高效的查找算法,算法的基本思路如下所示: 1. 将数组a按照从小到大的顺序排列; 2. 通过比较中间元素和目标值,缩小查找范围; 3. 重复第2步,直到找到目标值或者查找范围缩小到0。 下面是使用折半查找法实现的代码: int left = 0; int right = 19; int mid; while(left <= right){ mid = (left + right) / 2; if(a[mid] == num){ printf("该数是数组中第%d个元素的值\n", mid+1); break; } else if(a[mid] > num){ right = mid - 1; } else{ left = mid + 1; } } if(left > right){ printf("no found\n"); } 最后,我们可以根据返回结果判断输入的整数是否在a数组中,如果在则输出该数是数组中第几个元素的值,否则打印”no found”提示信息。 ### 回答3: 折半查找法是一种高效的查找算法,也称为二分查找法,利用了有序数组的特性,不断缩小查找范围进行查找。 具体实现过程如下: 1. 从键盘输入一个整数num作为查找目标; 2. 创建一个大小为20的整型数组a,并从键盘输入20个整数存入数组中; 3. 对数组a进行排序,确保数组有序; 4. 定义变量left和right分别表示查找范围的左右边界,初值分别为0和19; 5. 当left<=right时,执行以下操作: a. 获取中间索引mid的值,mid=(left+right)/2; b. 判断a[mid]与num的大小关系,如果a[mid]==num,则表示找到了目标,返回mid; c. 如果a[mid]>num,则目标值在左半部分,将right指向mid-1; d. 如果a[mid]<num,则目标值在右半部分,将left指向mid+1; 6. 如果整个循环结束后仍未找到目标值,输出"no found"。 下面是具体的代码实现: #include <stdio.h> // 折半查找法在有序数组a中查找num,返回查找结果 int binary_search(int a[], int num, int len) { int left = 0; // 查找范围的左边界 int right = len - 1; // 查找范围的右边界 while (left <= right) { int mid = (left + right) / 2; // 计算中间位置 if (a[mid] == num) { return mid; // 找到目标值,返回索引 } else if (a[mid] > num) { right = mid - 1; // 目标值在左半部分,缩小右边界 } else { left = mid + 1; // 目标值在右半部分,扩大左边界 } } return -1; // 未找到目标值 } int main() { int a[20]; // 定义大小为20的整型数组 int num; // 待查找的目标值 int index = -1; // 查找结果 printf("请输入20个整数,以空格分隔:\n"); for (int i = 0; i < 20; i++) { scanf("%d", &a[i]); // 从键盘输入20个整数存入数组 } // 对数组a进行排序 for (int i = 0; i < 19; i++) { for (int j = 0; j < 19 - i; j++) { if (a[j] > a[j+1]) { int temp = a[j]; a[j] = a[j+1]; a[j+1] = temp; } } } printf("请输入待查找的整数:"); scanf("%d", &num); index = binary_search(a, num, 20); // 在数组a中查找num if (index == -1) { printf("no found\n"); } else { printf("%d是数组中的第%d个元素。\n", num, index + 1); } return 0; }
### 回答1: 首先,我们需要先定义一个有序整型数组a,长度为10。然后,从键盘输入一个整数num,作为要查找的数。 接下来,我们可以使用折半查找法来查找num在a中的位置。具体步骤如下: 1. 定义变量left和right,分别表示查找范围的左右边界。初始时,left为0,right为a的长度减1。 2. 在while循环中,每次计算中间位置mid,如果a[mid]等于num,则返回mid。 3. 如果a[mid]大于num,则说明num在左半部分,将right更新为mid-1。 4. 如果a[mid]小于num,则说明num在右半部分,将left更新为mid+1。 5. 如果left大于right,则说明num不在a中,打印相应信息。 下面是具体的代码实现: python a = [1, 3, 5, 7, 9, 11, 13, 15, 17, 19] # 有序整型数组a num = int(input("请输入要查找的整数:")) # 从键盘输入要查找的整数 left, right = 0, len(a) - 1 # 初始化查找范围的左右边界 while left <= right: mid = (left + right) // 2 # 计算中间位置 if a[mid] == num: # 如果找到了num,返回位置 print("要查找的整数在a中的位置为:", mid) break elif a[mid] > num: # 如果a[mid]大于num,更新right right = mid - 1 else: # 如果a[mid]小于num,更新left left = mid + 1 else: # 如果left大于right,说明num不在a中 print("要查找的整数不在a中") 运行结果如下: 请输入要查找的整数:5 要查找的整数在a中的位置为: 2 请输入要查找的整数:20 要查找的整数不在a中 ### 回答2: 本题需要使用折半查找算法思想,即将有序数组划分为两个子数组,判断目标数值在哪一个子数组中,继续不断划分直至找到目标数值。 具体编程实现有以下几个步骤: 1.定义有序整型数组a,以及目标整数input_num; 2.使用输入函数从键盘读取输入的整数input_num; 3.定义变量low和high,分别代表数组a的最小索引和最大索引; 4.进行循环操作,只要low小于等于high,就一直执行以下步骤: 4.1.计算中间位置mid,使用mid=(low+high)/2; 4.2.判断a[mid]是否等于input_num,如果相等,输出mid并结束程序; 4.3.如果a[mid]大于input_num,则在左侧子数组中继续查找,更新high=mid-1; 4.4.如果a[mid]小于input_num,则在右侧子数组中继续查找,更新low=mid+1; 5.如果整个循环结束还没有找到目标数值input_num,则输出相应信息。 完整代码实现如下: #include <stdio.h> int main() { int a[10]={1,3,5,7,9,11,13,15,17,19}; //定义有序整型数组a int input_num; //定义目标整数input_num int low=0,high=9; //定义数组a的最小索引和最大索引 printf("请输入要查找的整数:\n"); scanf("%d",&input_num); //从键盘读取输入的整数input_num while(low<=high) { int mid=(low+high)/2; //计算中间位置mid if(a[mid]==input_num) //如果相等,输出mid并结束程序 { printf("%d在数组a的位置是:%d。\n",input_num,mid); return 0; } else if(a[mid]>input_num) //如果a[mid]大于input_num,则在左侧子数组中继续查找,更新high { high=mid-1; } else //如果a[mid]小于input_num,则在右侧子数组中继续查找,更新low { low=mid+1; } } printf("对不起,没有找到%d在数组a中的位置。\n",input_num); //如果整个循环结束还没有找到目标数值input_num,则输出相应信息 return 0; } ### 回答3: 折半查找法是一种高效的搜索算法,适用于已排好序的数组。该算法是通过将待查找的元素与数组的中间元素进行比较,以确定待查找元素位于数组的左半部分还是右半部分,然后继续在相应的子数组中进行搜索,直到找到待查找元素或者确定待查找元素不存在于数组中。 针对本题,可以按照以下步骤进行编程: 1.声明一个长度为10的整型数组a,并初始化为已排序的整数。 2.从键盘输入一个整数,存入变量target中。 3.定义两个变量low和high,分别表示数组的起始位置和结束位置。初始化为a[0]和a[9]。 4.通过比较target和数组中间元素的大小关系,确定待查找元素位于左半部分还是右半部分,并将low和high更新为相应的位置。 5.在新的子数组中继续进行折半查找,直到找到待查找元素或者low>high。 6.若找到待查找元素,则打印出该元素在数组中的位置。 7.若未找到待查找元素,则打印出相应信息。 下面是代码实现: python a = [1, 3, 4, 6, 7, 10, 11, 13, 15, 18] # 声明并初始化数组a target = int(input("请输入要查找的整数:")) # 从键盘输入待查找元素 low = 0 high = 9 while low <= high: mid = (low + high) // 2 if a[mid] == target: print("要查找的整数在数组中的位置为:", mid + 1) break elif a[mid] < target: low = mid + 1 else: high = mid - 1 if low > high: print("要查找的整数不在数组中。") 上述代码中,low和high分别指向数组的第一个和最后一个元素,每次将数组折半,效率较高。若找到待查找元素,则打印出该元素在数组中的位置;若未找到,则打印出相应信息。
### 回答1: 题目意思是:从键盘输入一个整数,然后在一个整型一维数组a[20]中,用折半查找法找出该数是数组中第几个素数的值。如果该数不在数组中,则输出“no found”。 回答:这道题目要求我们用折半查找法在给定的整型数组中找到键盘输入的整数是数组中第几个素数的值。如果键盘输入的整数不在数组中,则输出“no found”。 ### 回答2: 折半查找法也被称为二分查找法,是一种高效的查找算法。他的基本思想是利用数组有序排列的规律,不断缩小查找范围,最终找到目标值。 使用折半查找法寻找一个整数在一个整型一维数组a[20]中的位置,可以分以下步骤进行: 1. 从键盘输入要查找的整数。 2. 对给定的一维数组进行排序,排序后的数组可以方便地用于折半查找。 3. 定义左侧和右侧的指针变量,分别指向数组第一个元素和最后一个元素。 4. 判断中间值的大小,如果该值等于要查找的数,返回该元素的下标。 5. 如果该值小于要查找的数,左指针指向中间位置,重复第4步。 6. 如果该值大于要查找的数,右指针指向中间位置,重复第4步。 7. 如果最后左右指针指向的位置重合,则表明要查找的数不在数组中。 下面给出示例程序: #include <stdio.h> //折半查找函数 int Binary_Search(int a[], int n, int key) { int lb = 0, ub = n - 1; int mid; while (lb <= ub) { mid = (lb + ub) / 2; if (a[mid] == key) return mid; if (a[mid] < key) lb = mid + 1; else ub = mid - 1; } return -1; //如果没找到,返回-1 } int main() { int a[20] = {44, 24, 36, 7, 87, 90, 33, 68, 15, 55, 69, 75, 17, 84, 76, 12, 99, 28, 50, 9}; int n = 20; int key, pos; printf("请输入要查找的数:"); scanf("%d", &key); //对数组进行排序,这里使用冒泡排序 for (int i = n - 1; i >= 0; i--) { for (int j = 0; j < i; j++) { if (a[j] > a[j + 1]) { int temp = a[j]; a[j] = a[j + 1]; a[j + 1] = temp; } } } pos = Binary_Search(a, n, key); //调用折半查找函数 if (pos == -1) printf("no found"); else printf("%d是数组中第%d个元素\n", key, pos + 1); return 0; } 在这个程序中,我首先输入了要查找的整数,然后使用冒泡排序对数组进行排序,接着调用折半查找函数,最后根据返回值输出查找结果。如果要查找的数不在数组中,函数将返回-1,程序会输出"no found"。 ### 回答3: 折半查找法,也称二分查找法,是一种常见的查找算法。它的核心思想是在有序数组中不断缩小查找范围,直到找到目标元素或者确定目标元素不存在。 在该问题中,我们需要从键盘输入一个整数,然后在一个整型一维数组 a[20] 中查找该数的位置。为了方便演示,这里假设数组已经按照升序排列。 首先,我们需要在程序中输入该整数,可以使用 scanf 函数实现: c int num; scanf("%d", &num); 接下来,我们可以使用一个循环在数组中进行查找,然后根据折半查找法来缩小查找范围,直到找到目标元素或者确定目标元素不存在。 具体实现过程如下: c int left = 0; //查找范围左边界 int right = 19; //查找范围右边界 int mid; //中间位置 while(left <= right) { mid = (left + right) / 2; //计算中间位置 if(a[mid] == num) //找到了目标元素 { printf("%d is found at index %d.\n", num, mid); break; } else if(a[mid] < num) //目标元素在右半边 { left = mid + 1; //缩小查找范围 } else //目标元素在左半边 { right = mid - 1; //缩小查找范围 } } if(left > right) //目标元素不存在 { printf("no found.\n"); } 以上代码中,我们首先定义了查找范围的左边界和右边界,初始值分别为数组的第一个元素和最后一个元素。然后,使用一个 while 循环在数组中进行查找,每次计算中间位置,并判断目标元素在左边还是右边。如果找到了目标元素,就输出该元素在数组中的位置。如果查找范围左边界大于右边界,就表示目标元素不存在,输出提示信息即可。 综上所述,使用折半查找法在一个整型一维数组中查找用户输入的整数,可以通过上述代码实现。

最新推荐

【24计算机考研】安徽师范大学24计算机考情分析

安徽师范大学24计算机考情分析 链接:https://pan.baidu.com/s/1FgQRVbVnyentaDcQuXDffQ 提取码:kdhz

62 matlab中的图形句柄 .avi

62 matlab中的图形句柄 .avi

数据结构1800试题.pdf

你还在苦苦寻找数据结构的题目吗?这里刚刚上传了一份数据结构共1800道试题,轻松解决期末挂科的难题。不信?你下载看看,这里是纯题目,你下载了再来私信我答案。按数据结构教材分章节,每一章节都有选择题、或有判断题、填空题、算法设计题及应用题,题型丰富多样,共五种类型题目。本学期已过去一半,相信你数据结构叶已经学得差不多了,是时候拿题来练练手了,如果你考研,更需要这份1800道题来巩固自己的基础及攻克重点难点。现在下载,不早不晚,越往后拖,越到后面,你身边的人就越卷,甚至卷得达到你无法想象的程度。我也是曾经遇到过这样的人,学习,练题,就要趁现在,不然到时你都不知道要刷数据结构题好还是高数、工数、大英,或是算法题?学完理论要及时巩固知识内容才是王道!记住!!!下载了来要答案(v:zywcv1220)。

语义Web动态搜索引擎:解决语义Web端点和数据集更新困境

跟踪:PROFILES数据搜索:在网络上分析和搜索数据WWW 2018,2018年4月23日至27日,法国里昂1497语义Web检索与分析引擎Semih Yumusak†KTO Karatay大学,土耳其semih. karatay.edu.trAI 4 BDGmbH,瑞士s. ai4bd.comHalifeKodazSelcukUniversity科尼亚,土耳其hkodaz@selcuk.edu.tr安德烈亚斯·卡米拉里斯荷兰特文特大学utwente.nl计算机科学系a.kamilaris@www.example.com埃利夫·尤萨尔KTO KaratayUniversity科尼亚,土耳其elif. ogrenci.karatay.edu.tr土耳其安卡拉edogdu@cankaya.edu.tr埃尔多安·多杜·坎卡亚大学里扎·埃姆雷·阿拉斯KTO KaratayUniversity科尼亚,土耳其riza.emre.aras@ogrenci.karatay.edu.tr摘要语义Web促进了Web上的通用数据格式和交换协议,以实现系统和机器之间更好的互操作性。 虽然语义Web技术被用来语义注释数据和资源,更容易重用,这些数据源的特设发现仍然是一个悬 而 未 决 的 问 题 。 流 行 的 语 义 Web �

matlabmin()

### 回答1: `min()`函数是MATLAB中的一个内置函数,用于计算矩阵或向量中的最小值。当`min()`函数接收一个向量作为输入时,它返回该向量中的最小值。例如: ``` a = [1, 2, 3, 4, 0]; min_a = min(a); % min_a = 0 ``` 当`min()`函数接收一个矩阵作为输入时,它可以按行或列计算每个元素的最小值。例如: ``` A = [1, 2, 3; 4, 0, 6; 7, 8, 9]; min_A_row = min(A, [], 2); % min_A_row = [1;0;7] min_A_col = min(A, [],

TFT屏幕-ILI9486数据手册带命令标签版.pdf

ILI9486手册 官方手册 ILI9486 is a 262,144-color single-chip SoC driver for a-Si TFT liquid crystal display with resolution of 320RGBx480 dots, comprising a 960-channel source driver, a 480-channel gate driver, 345,600bytes GRAM for graphic data of 320RGBx480 dots, and power supply circuit. The ILI9486 supports parallel CPU 8-/9-/16-/18-bit data bus interface and 3-/4-line serial peripheral interfaces (SPI). The ILI9486 is also compliant with RGB (16-/18-bit) data bus for video image display. For high speed serial interface, the ILI9486 also provides one data and clock lane and supports up to 500Mbps on MIPI DSI link. And also support MDDI interface.

数据搜索和分析

跟踪:PROFILES数据搜索:在网络上分析和搜索数据WWW 2018,2018年4月23日至27日,法国里昂1485表征数据集搜索查询艾米莉亚·卡普尔扎克英国南安普敦大学开放数据研究所emilia. theodi.org珍妮·坦尼森英国伦敦开放数据研究所jeni@theodi.org摘要在Web上生成和发布的数据量正在迅速增加,但在Web上搜索结构化数据仍然存在挑战。在本文中,我们探索数据集搜索分析查询专门为这项工作产生的通过众包-ING实验,并比较它们的搜索日志分析查询的数据门户网站。搜索环境的变化以及我们给人们的任务改变了生成的查询。 我们发现,在我们的实验中发出的查询比数据门户上的数据集的搜索查询要长得多。 它们还包含了七倍以上的地理空间和时间信息的提及,并且更有可能被结构化为问题。这些见解可用于根据数据集搜索的特定信息需求和特征关键词数据集搜索,�

os.listdir()

### 回答1: os.listdir() 是一个 Python 函数,用于列出指定目录中的所有文件和子目录的名称。它需要一个字符串参数,表示要列出其内容的目录的路径。例如,如果您想要列出当前工作目录中的文件和目录,可以使用以下代码: ``` import os dir_path = os.getcwd() # 获取当前工作目录 files = os.listdir(dir_path) # 获取当前工作目录中的所有文件和目录 for file in files: print(file) ``` 此代码将列出当前工作目录中的所有文件和目录的名称。 ### 回答2: os.l

freescale IMX6 开发板原理图

freesacle 的arm cortex-a9的双核 四核管脚兼容CPU开发板原理图。

自适应学习率的矩阵近似协同过滤算法(AdaError)

首页>外文书>人文>心理励志> User Modeling,WWW 2018,2018年4月23日至27日,法741AdaError:一种自适应学习率的矩阵近似协同过滤李东升IBM中国研究院中国上海ldsli@cn.ibm.com上海复旦大学,中国lutun@fudan.edu.cn摘要朝晨IBM中国研究院中国上海cchao@cn.ibm.com李尚科罗拉多大学博尔德分校美国科罗拉多州博尔德li. colorado.edu秦律科罗拉多大学博尔德分校美国科罗拉多州博尔德www.example.comqin.lv @colorado.edu复旦大学上海,中国ninggu@fudan.edu.cnACM参考格式:HansuGuSeagateTechnology美国科罗拉多guhansu@gmail.comStephen M.朱IBM研究院-中国上海,中国schu@cn.ibm.com诸如随机梯度下降的基于梯度的学习方法被广泛用于基于矩阵近似的协同过滤算法中,以基于观察到的用户项目评级来训练推荐模型。一个主要的困难 在现有的基于梯度的学习方法中,确定适当的学习率是一个重要的问题,因为如果�