编写程序,china_smoking.csv文件是有关中国某些城市吸烟与癌症的统计数据,从键盘中输入城市名称,输出该城市的smoking_yes_cancer_yes和smoking_no_cancer_no数据
时间: 2024-02-05 21:14:26 浏览: 108
好的,以下是Python代码实现:
```python
import pandas as pd
# 读取csv文件
data = pd.read_csv('china_smoking.csv')
# 获取城市名称输入
city_name = input("请输入城市名称:")
# 获取该城市的smoking_yes_cancer_yes和smoking_no_cancer_no数据
smoking_yes_cancer_yes = data.loc[data['City'] == city_name, 'smoking_yes_cancer_yes'].iloc[0]
smoking_no_cancer_no = data.loc[data['City'] == city_name, 'smoking_no_cancer_no'].iloc[0]
# 输出结果
print(f"{city_name}的smoking_yes_cancer_yes数据为:{smoking_yes_cancer_yes}")
print(f"{city_name}的smoking_no_cancer_no数据为:{smoking_no_cancer_no}")
```
注意:在运行程序前,需要确保`china_smoking.csv`文件和程序文件在同一目录下。
相关问题
Matplotlib加载学习通资料data文件夹datasets下的tips.csv文件数据,绘制出吸烟顾客与不吸烟顾客的消费金额与小费之间的散点图
好的,这个问题可以回答。您可以使用以下代码绘制散点图:
```python
import pandas as pd
import matplotlib.pyplot as plt
# 读取数据
tips = pd.read_csv('./data/datasets/tips.csv')
# 创建图形
fig, ax = plt.subplots()
# 绘制吸烟顾客的散点图
smoker = tips[tips['smoker'] == 'Yes']
ax.scatter(smoker['total_bill'], smoker['tip'], color='red', label='Smoking Customers')
# 绘制不吸烟顾客的散点图
non_smoker = tips[tips['smoker'] == 'No']
ax.scatter(non_smoker['total_bill'], non_smoker['tip'], color='blue', label='Non-Smoking Customers')
# 添加图例和标签
ax.legend()
ax.set_xlabel('Total Bill')
ax.set_ylabel('Tip')
# 显示图形
plt.show()
```
这样就可以绘制出吸烟顾客与不吸烟顾客的消费金额与小费之间的散点图了。
Matplotlib加载学习通资料data文件夹datasets下的tips.csv文件数据,绘制出女性与男性中吸烟与不吸烟顾客的消费金额与小费之间的散点图关系
好的,这是一个关于数据可视化的问题。您可以使用Matplotlib库来加载tips.csv文件,并绘制出女性和男性中吸烟与不吸烟顾客的消费金额和小费之间的散点图关系。为了更好地实现这个问题,您还需要使用Pandas库来处理数据。你可以像这样开始代码:
```python
import pandas as pd
import matplotlib.pyplot as plt
data = pd.read_csv("data/datasets/tips.csv")
```
然后,您需要按性别和烟民状态筛选数据,并分别绘制散点图:
```python
# 按性别和烟民状态筛选数据
male_smokers = data[(data['sex'] == 'Male') & (data['smoker'] == 'Yes')]
male_non_smokers = data[(data['sex'] == 'Male') & (data['smoker'] == 'No')]
female_smokers = data[(data['sex'] == 'Female') & (data['smoker'] == 'Yes')]
female_non_smokers = data[(data['sex'] == 'Female') & (data['smoker'] == 'No')]
# 绘制男性吸烟者和非吸烟者的散点图
plt.scatter(male_smokers['total_bill'], male_smokers['tip'], label='Male Smokers')
plt.scatter(male_non_smokers['total_bill'], male_non_smokers['tip'], label='Male Non-Smokers')
# 绘制女性吸烟者和非吸烟者的散点图
plt.scatter(female_smokers['total_bill'], female_smokers['tip'], label='Female Smokers')
plt.scatter(female_non_smokers['total_bill'], female_non_smokers['tip'], label='Female Non-Smokers')
# 设置图例和标题
plt.legend()
plt.title('Relationship between Total Bill and Tip by Gender and Smoking Status')
# 显示图像
plt.show()
```
当您运行这个代码时,您将得到一个散点图,展示了女性与男性中吸烟与不吸烟顾客的消费金额与小费之间的关系。
阅读全文