使用Python编写三种利用动态规划,贪心,回溯,分治等优化算法解决图着色问题的算法代码
时间: 2023-12-02 08:05:16 浏览: 86
用python解决数据结构与算法问题.zip
动态规划求解图着色问题代码:
``` python
def graph_coloring_dp(graph, colors):
n = len(graph)
dp = [[float('inf') for j in range(colors)] for i in range(n)]
for i in range(n):
for j in range(colors):
if i == 0:
dp[i][j] = 1
else:
for k in range(colors):
if graph[i][k] == 1 and j != k:
dp[i][j] = min(dp[i][j], dp[i-1][k]+1)
return min(dp[-1])
```
贪心求解图着色问题代码:
``` python
def graph_coloring_greedy(graph, colors):
color_map = {}
for node in range(len(graph)):
available_colors = set(range(1, colors+1))
for neighbor in graph[node]:
if neighbor in color_map:
if color_map[neighbor] in available_colors:
available_colors.remove(color_map[neighbor])
color_map[node] = min(available_colors)
return max(color_map.values())
```
回溯求解图着色问题代码:
``` python
def graph_coloring_backtrack(graph, colors):
def backtrack(node):
nonlocal min_color
if node == len(graph):
min_color = min(min_color, max(color_map))
return
for color in range(1, colors+1):
if is_valid(node, color):
color_map[node] = color
backtrack(node+1)
color_map[node] = 0
def is_valid(node, color):
for neighbor in graph[node]:
if color_map[neighbor] == color:
return False
return True
color_map = [0] * len(graph)
min_color = float('inf')
backtrack(0)
return min_color
```
分治求解图着色问题代码:
``` python
def graph_coloring_divide_conquer(graph, colors):
def divide_conquer(nodes):
if len(nodes) == 1:
return 1
left_nodes = nodes[:len(nodes)//2]
right_nodes = nodes[len(nodes)//2:]
left_color = divide_conquer(left_nodes)
right_color = divide_conquer(right_nodes)
return max(left_color, right_color)
return divide_conquer(list(range(len(graph))))
```
注意:以上代码未考虑所有情况,仅供参考。
阅读全文