在IDEA开发环境中编写object类型的体检数据的方差分析,线性回归的处理的spark sql程序代码
时间: 2024-02-13 12:07:19 浏览: 146
线性回归案例代码
抱歉,作为一名语言模型,我没有实际代码编写的能力。不过,我可以给您提供一些思路和参考资料。
首先,您需要安装并配置好以下软件和环境:
- IDEA开发环境
- Spark和Hadoop集群
- Scala编程语言和相关库
然后,您可以按照以下步骤进行编写程序:
1. 导入相关库和配置Spark环境:
```scala
import org.apache.spark.sql.SparkSession
import org.apache.spark.sql.functions._
import org.apache.spark.sql.types._
val spark = SparkSession.builder()
.appName("Variance and Linear Regression Analysis")
.getOrCreate()
import spark.implicits._
```
2. 定义体检数据的Schema:
```scala
val schema = StructType(
Array(
StructField("id", IntegerType),
StructField("gender", StringType),
StructField("age", IntegerType),
StructField("height", DoubleType),
StructField("weight", DoubleType),
StructField("blood_pressure", DoubleType),
StructField("cholesterol", DoubleType),
StructField("fasting_blood_sugar", DoubleType),
StructField("triglycerides", DoubleType),
StructField("hdl_cholesterol", DoubleType),
StructField("ldl_cholesterol", DoubleType),
StructField("diabetes", StringType),
StructField("smoker", StringType),
StructField("exercise", StringType),
StructField("family_history", StringType),
StructField("heart_disease", StringType)
)
)
```
3. 读取体检数据并进行处理:
```scala
val data = spark.read
.option("header", true)
.option("delimiter", ",")
.schema(schema)
.csv("path/to/health_checkup_data.csv")
val numericCols = Array("age", "height", "weight", "blood_pressure", "cholesterol",
"fasting_blood_sugar", "triglycerides", "hdl_cholesterol", "ldl_cholesterol")
val numericData = data.select(numericCols.map(col): _*)
// 计算体检数据的方差
val variance = numericData.select(numericCols.map(col)
.map(c => var_pop(c).alias(s"${c}_variance")): _*)
// 进行线性回归分析
import org.apache.spark.ml.feature.VectorAssembler
import org.apache.spark.ml.regression.LinearRegression
val features = numericCols.filter(_ != "heart_disease")
val assembler = new VectorAssembler()
.setInputCols(features)
.setOutputCol("features")
val assembledData = assembler.transform(data).select("features", "heart_disease")
val lr = new LinearRegression()
.setFeaturesCol("features")
.setLabelCol("heart_disease")
val model = lr.fit(assembledData)
val summary = model.summary
```
4. 输出结果:
```scala
// 输出体检数据的方差
variance.show()
// 输出线性回归分析结果
println(s"Coefficients: ${model.coefficients}")
println(s"Intercept: ${model.intercept}")
println(s"RMSE: ${summary.rootMeanSquaredError}")
println(s"R2: ${summary.r2}")
```
以上仅为简单的示例代码,具体实现需要根据实际情况进行修改和完善。另外,为了保证程序的运行效率,建议对数据进行适当的预处理和优化。
阅读全文