for n, m in self.layers.named_modules(): if 'S_Adapter' in n: for n2, m2 in m.named_modules(): if 'D_fc2' in n2: if isinstance(m2, nn.Linear): nn.init.constant_(m2.weight, 0) nn.init.constant_(m2.bias, 0)

时间: 2023-06-19 09:06:26 浏览: 42
这是一个 PyTorch 模型中的初始化函数,主要是针对具有名字 "S_Adapter" 和 "D_fc2" 的层进行初始化。具体来说,它首先使用 named_modules() 函数找到所有层及其子层,然后检查每个层的名字是否包含 "S_Adapter" 和 "D_fc2"。如果找到了这两个名字,就检查该层是否是 nn.Linear 类型的层。如果是,则使用 nn.init.constant_() 函数将其权重和偏置初始化为 0。这种初始化方法比较常见,可以防止模型在开始训练时出现过拟合的现象。
相关问题

for name, m in self.deconv_layers.named_modules(): if isinstance(m, nn.BatchNorm2d): nn.init.constant_(m.weight, 1) nn.init.constant_(m.bias, 0)

这段代码是用来初始化神经网络中的BatchNormalization层的权重和偏置项的。BatchNormalization是一种用于加速神经网络训练和提高模型性能的技术。在这段代码中,它遍历了self.deconv_layers中的所有模块,并检查是否是BatchNormalization层。如果是的话,就将权重设置为1,偏置项设置为0,以进行初始化操作。这样做的目的是为了确保网络开始时具有合适的初始状态,以提高训练的效果。

class BufferedSequential(nn.Module): def __init__(self, layers, buffer_or_not): super(BufferedSequential, self).__init__() self.layers = layers self.buffer_or_not = buffer_or_not self.n_buffers = np.sum(buffer_or_not) def parameters(self): return [param for layer in self.layers for param in layer.parameters()] def forward(self, x): if not isinstance(x, Variable): if not isinstance(x, torch.Tensor): x = torch.Tensor(x) x = Variable(x) self.buffer = [] for layer, is_buffered in zip(self.layers, self.buffer_or_not): x = layer(x) if is_buffered: self.buffer.append(x) return x

这段代码定义了一个名为 `BufferedSequential` 的自定义神经网络模块。它接受两个参数:`layers` 和 `buffer_or_not`。`layers` 是一个包含多个层的列表,`buffer_or_not` 是一个布尔值的列表,用于指示每个层是否需要缓存输出。 在 `__init__` 方法中,它首先调用父类的 `__init__` 方法进行初始化,然后将传入的 `layers` 和 `buffer_or_not` 参数保存在对象的属性中。`n_buffers` 属性是通过统计 `buffer_or_not` 列表中为 True 的元素数量来计算的。 `parameters` 方法返回模块中所有层的参数。它通过遍历 `layers` 列表和每个层的参数,将所有参数收集到一个列表中并返回。 `forward` 方法定义了前向传播的逻辑。它接受输入 `x` 并将其转换为 `torch.Tensor` 类型的变量。然后,它创建了一个空的列表 `self.buffer` 用于存储缓存的输出。 接下来,它使用 `zip` 函数迭代 `layers` 和 `buffer_or_not` 列表,并对每个层进行前向传播。如果当前层需要缓存输出,则将输出添加到 `self.buffer` 列表中。 最后,它返回最后一个层的输出 `x`。 这段代码的作用是在神经网络模型中,允许选择性地缓存某些层的输出,以便后续的操作可以使用这些缓存的值。

相关推荐

from collections import OrderedDict import torch import torch.nn.functional as F import torchvision from torch import nn import models.vgg_ as models class BackboneBase_VGG(nn.Module): def __init__(self, backbone: nn.Module, num_channels: int, name: str, return_interm_layers: bool): super().__init__() features = list(backbone.features.children()) if return_interm_layers: if name == 'vgg16_bn': self.body1 = nn.Sequential(*features[:13]) self.body2 = nn.Sequential(*features[13:23]) self.body3 = nn.Sequential(*features[23:33]) self.body4 = nn.Sequential(*features[33:43]) else: self.body1 = nn.Sequential(*features[:9]) self.body2 = nn.Sequential(*features[9:16]) self.body3 = nn.Sequential(*features[16:23]) self.body4 = nn.Sequential(*features[23:30]) else: if name == 'vgg16_bn': self.body = nn.Sequential(*features[:44]) # 16x down-sample elif name == 'vgg16': self.body = nn.Sequential(*features[:30]) # 16x down-sample self.num_channels = num_channels self.return_interm_layers = return_interm_layers def forward(self, tensor_list): out = [] if self.return_interm_layers: xs = tensor_list for _, layer in enumerate([self.body1, self.body2, self.body3, self.body4]): xs = layer(xs) out.append(xs) else: xs = self.body(tensor_list) out.append(xs) return out class Backbone_VGG(BackboneBase_VGG): """ResNet backbone with frozen BatchNorm.""" def __init__(self, name: str, return_interm_layers: bool): if name == 'vgg16_bn': backbone = models.vgg16_bn(pretrained=True) elif name == 'vgg16': backbone = models.vgg16(pretrained=True) num_channels = 256 super().__init__(backbone, num_channels, name, return_interm_layers) def build_backbone(args): backbone = Backbone_VGG(args.backbone, True) return backbone if __name__ == '__main__': Backbone_VGG('vgg16', True)

最新推荐

recommend-type

关于keras.layers.Conv1D的kernel_size参数使用介绍

主要介绍了关于keras.layers.Conv1D的kernel_size参数使用介绍,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
recommend-type

对tensorflow中tf.nn.conv1d和layers.conv1d的区别详解

今天小编就为大家分享一篇对tensorflow中tf.nn.conv1d和layers.conv1d的区别详解,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
recommend-type

HTML+CSS制作的个人博客网页.zip

如标题所述,内有详细说明
recommend-type

基于MATLAB实现的SVC PSR 光谱数据的读入,光谱平滑,光谱重采样,文件批处理;+使用说明文档.rar

CSDN IT狂飙上传的代码均可运行,功能ok的情况下才上传的,直接替换数据即可使用,小白也能轻松上手 【资源说明】 基于MATLAB实现的SVC PSR 光谱数据的读入,光谱平滑,光谱重采样,文件批处理;+使用说明文档.rar 1、代码压缩包内容 主函数:main.m; 调用函数:其他m文件;无需运行 运行结果效果图; 2、代码运行版本 Matlab 2020b;若运行有误,根据提示GPT修改;若不会,私信博主(问题描述要详细); 3、运行操作步骤 步骤一:将所有文件放到Matlab的当前文件夹中; 步骤二:双击打开main.m文件; 步骤三:点击运行,等程序运行完得到结果; 4、仿真咨询 如需其他服务,可后台私信博主; 4.1 期刊或参考文献复现 4.2 Matlab程序定制 4.3 科研合作 功率谱估计: 故障诊断分析: 雷达通信:雷达LFM、MIMO、成像、定位、干扰、检测、信号分析、脉冲压缩 滤波估计:SOC估计 目标定位:WSN定位、滤波跟踪、目标定位 生物电信号:肌电信号EMG、脑电信号EEG、心电信号ECG 通信系统:DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测识别融合、LEACH协议、信号检测、水声通信 5、欢迎下载,沟通交流,互相学习,共同进步!
recommend-type

基于MATLAB实现的有限差分法实验报告用MATLAB中的有限差分法计算槽内电位+使用说明文档

CSDN IT狂飙上传的代码均可运行,功能ok的情况下才上传的,直接替换数据即可使用,小白也能轻松上手 【资源说明】 基于MATLAB实现的有限差分法实验报告用MATLAB中的有限差分法计算槽内电位;对比解析法和数值法的异同点;选取一点,绘制收敛曲线;总的三维电位图+使用说明文档 1、代码压缩包内容 主函数:main.m; 调用函数:其他m文件;无需运行 运行结果效果图; 2、代码运行版本 Matlab 2020b;若运行有误,根据提示GPT修改;若不会,私信博主(问题描述要详细); 3、运行操作步骤 步骤一:将所有文件放到Matlab的当前文件夹中; 步骤二:双击打开main.m文件; 步骤三:点击运行,等程序运行完得到结果; 4、仿真咨询 如需其他服务,可后台私信博主; 4.1 期刊或参考文献复现 4.2 Matlab程序定制 4.3 科研合作 功率谱估计: 故障诊断分析: 雷达通信:雷达LFM、MIMO、成像、定位、干扰、检测、信号分析、脉冲压缩 滤波估计:SOC估计 目标定位:WSN定位、滤波跟踪、目标定位 生物电信号:肌电信号EMG、脑电信号EEG、心电信号ECG 通信系统:DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测识别融合、LEACH协议、信号检测、水声通信 5、欢迎下载,沟通交流,互相学习,共同进步!
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【实战演练】MATLAB用遗传算法改进粒子群GA-PSO算法

![MATLAB智能算法合集](https://static.fuxi.netease.com/fuxi-official/web/20221101/83f465753fd49c41536a5640367d4340.jpg) # 2.1 遗传算法的原理和实现 遗传算法(GA)是一种受生物进化过程启发的优化算法。它通过模拟自然选择和遗传机制来搜索最优解。 **2.1.1 遗传算法的编码和解码** 编码是将问题空间中的解表示为二进制字符串或其他数据结构的过程。解码是将编码的解转换为问题空间中的实际解的过程。常见的编码方法包括二进制编码、实数编码和树形编码。 **2.1.2 遗传算法的交叉和
recommend-type

openstack的20种接口有哪些

以下是OpenStack的20种API接口: 1. Identity (Keystone) API 2. Compute (Nova) API 3. Networking (Neutron) API 4. Block Storage (Cinder) API 5. Object Storage (Swift) API 6. Image (Glance) API 7. Telemetry (Ceilometer) API 8. Orchestration (Heat) API 9. Database (Trove) API 10. Bare Metal (Ironic) API 11. DNS
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。