正四面体线框模型,使用java编程实现正四面体的透视投影动态隐线算法。
时间: 2024-05-04 18:18:16 浏览: 164
实现正四面体的透视投影动态隐线算法,需要以下步骤:
1. 定义正四面体的顶点坐标和连接关系。
2. 根据相机位置和视角计算出每个顶点在屏幕上的坐标。
3. 对于每个面,判断其是否朝向相机,如果是则不需要绘制,否则需要进行透视投影。
4. 对于每个面,判断其是否需要显示边界,如果需要则进行动态隐线算法。
下面是一个简单的 Java 代码实现:
```java
import java.awt.*;
import java.awt.event.*;
import java.awt.geom.*;
import javax.swing.*;
public class Tetrahedron extends JPanel implements ActionListener {
private static final int WIDTH = 800;
private static final int HEIGHT = 600;
private static final int SIZE = 100;
private static final int[] X = {0, 0, SIZE/2, -SIZE/2};
private static final int[] Y = {0, SIZE, -SIZE/2, -SIZE/2};
private static final int[][] Z = {{0, SIZE/2, SIZE/2, SIZE/2},
{0, 0, SIZE/2, -SIZE/2},
{0, 0, -SIZE/2, SIZE/2},
{0, -SIZE, 0, 0}};
private static final int[][] CONNECT = {{0, 2}, {0, 3}, {0, 1}, {1, 2}, {1, 3}, {2, 3}};
private double angle = 0;
private Timer timer = new Timer(30, this);
public Tetrahedron() {
setPreferredSize(new Dimension(WIDTH, HEIGHT));
timer.start();
}
@Override
public void paintComponent(Graphics g) {
Graphics2D g2d = (Graphics2D)g;
g2d.setRenderingHint(RenderingHints.KEY_ANTIALIASING, RenderingHints.VALUE_ANTIALIAS_ON);
g2d.clearRect(0, 0, WIDTH, HEIGHT);
// calculate vertex coordinates
double sin = Math.sin(angle);
double cos = Math.cos(angle);
int[][] coords = new int[4][2];
for (int i = 0; i < 4; i++) {
int x = X[i];
int y = (int)(Y[i]*cos - Z[i][0]*sin);
int z = (int)(Y[i]*sin + Z[i][0]*cos);
coords[i][0] = x;
coords[i][1] = (int)(y*cos - z*sin);
}
// draw edges
g2d.setColor(Color.BLACK);
for (int[] conn : CONNECT) {
int x1 = coords[conn[0]][0] + WIDTH/2;
int y1 = coords[conn[0]][1] + HEIGHT/2;
int x2 = coords[conn[1]][0] + WIDTH/2;
int y2 = coords[conn[1]][1] + HEIGHT/2;
if (isVisible(x1, y1, x2, y2)) {
g2d.drawLine(x1, y1, x2, y2);
}
}
angle += 0.05;
}
private boolean isVisible(int x1, int y1, int x2, int y2) {
boolean visible = true;
for (int[] conn : CONNECT) {
int x3 = X[conn[0]];
int y3 = Y[conn[0]];
int z3 = Z[conn[0]][0];
int x4 = X[conn[1]];
int y4 = Y[conn[1]];
int z4 = Z[conn[1]][0];
if (isIntersecting(x1, y1, x2, y2, x3, y3, z3, x4, y4, z4)) {
visible = false;
break;
}
}
return visible;
}
private boolean isIntersecting(int x1, int y1, int x2, int y2, int x3, int y3, int z3, int x4, int y4, int z4) {
double t = ((x3-x1)*(y4-y3) - (y3-y1)*(x4-x3))/((x2-x1)*(y4-y3) - (y2-y1)*(x4-x3));
double s = ((x2-x1)*(y3-y1) - (y2-y1)*(x3-x1))/((x2-x1)*(y4-y3) - (y2-y1)*(x4-x3));
if (t >= 0 && t <= 1 && s >= 0 && s <= 1) {
int z1 = (int)((1-t)*z3 + t*z4);
int z2 = (int)((1-s)*z3 + s*z4);
if (z1 < z2) {
return true;
}
}
return false;
}
public static void main(String[] args) {
JFrame frame = new JFrame("Tetrahedron");
frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
frame.getContentPane().add(new Tetrahedron());
frame.pack();
frame.setVisible(true);
}
@Override
public void actionPerformed(ActionEvent e) {
repaint();
}
}
```
在这个代码中,我们首先定义了正四面体的顶点坐标和连接关系,然后在 `paintComponent` 方法中计算出每个顶点在屏幕上的坐标。接着,我们绘制正四面体的边界,对于每条边,我们判断其是否需要进行透视投影和动态隐线算法。最后,在 `actionPerformed` 方法中更新角度并重绘图形。
阅读全文