给我找一个用java实现hadoop的mapreduce编程的教程文档

时间: 2024-06-07 08:05:22 浏览: 136
请参考以下链接,里面详细介绍了如何使用Java实现Hadoop的MapReduce编程: https://hadoop.apache.org/docs/stable/hadoop-mapreduce-client/hadoop-mapreduce-client-core/MapReduceTutorial.html
相关问题

Hadoop_MapReduce编程实现 起码五个需求

### 使用Hadoop MapReduce编程实现五个及以上需求的示例 #### 1. 单词计数 (Word Count public class WordCount { public static class TokenizerMapper extends Mapper<Object, Text, Text, IntWritable> { private final static IntWritable one = new IntWritable(1); private Text word = new Text(); @Override protected void map(Object key, Text value, Context context) throws IOException, InterruptedException { StringTokenizer itr = new StringTokenizer(value.toString()); while (itr.hasMoreTokens()) { word.set(itr.nextToken()); context.write(word, one); } } } public static class IntSumReducer extends Reducer<Text,IntWritable,Text,IntWritable> { private IntWritable result = new IntWritable(); @Override protected void reduce(Text key, Iterable<IntWritable> values, Context context) throws IOException, InterruptedException { int sum = 0; for (IntWritable val : values) { sum += val.get(); } result.set(sum); context.write(key, result); } } } ``` 此代码展示了如何创建一个简单的映射器和化简器来计算文档中各个词语的数量[^3]。 #### 2. 平均值计算 (Average Calculation) 平均值计算可以用来求解一组数值数据集的算术平均数。这通常涉及到两个阶段:先汇总总数与项数,再除以总数量得到最终结果。 ```java // 假设有一个自定义的Combiner用于局部聚合... public static class AvgMapper extends Mapper<LongWritable, Text, Text, DoubleArrayWritable> { ... } public static class AvgReducer extends Reducer<Text, DoubleArrayWritable, Text, FloatWritable> { ... } ``` 这里`DoubleArrayWritable`被设计成携带一对双精度浮点数——分别是累加后的总和及其对应的条目数目。 #### 3. 数据过滤 (Data Filtering) 通过设定特定条件筛选符合条件的数据记录。比如只保留年龄大于等于某个阈值的人的信息: ```java public static class FilterMapper extends Mapper<LongWritable, Text, NullWritable, Text> { private final static NullWritable NULL_KEY = NullWritable.get(); private Text lineRecord; @Override protected void setup(Context context) throws IOException, InterruptedException { super.setup(context); this.lineRecord = new Text(); } @Override protected void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException { String[] fields = value.toString().split(","); if(Integer.parseInt(fields[1]) >= THRESHOLD_AGE){ lineRecord.set(value); context.write(NULL_KEY,lineRecord ); } } } // 这里不需要reducer因为只需要输出满足条件的结果即可。 ``` 这段代码实现了基于给定字段(如年龄)进行简单过滤的功能。 #### 4. 排序操作 (Sorting Operation) 对于大规模数据集来说,在分布式环境中执行排序是一项重要任务。可以通过设置适当的键比较逻辑来自定义排序顺序。 ```java public static class SortMapper extends Mapper<LongWritable, Text, CustomKey, NullWritable> {...} public static class SortReducer extends IdentityReducer<CustomKey,NullWritable>{...} ``` 其中`CustomKey`应该继承于`WritableComparable<T>`接口并重写其compareTo方法以便支持自定义排序规则。 #### 5. 统计分析 (Statistical Analysis) 利用MapReduce框架来进行一些基本的概率分布估计或其他形式的统计学研究也是可行的;例如估算泊松分布参数λ或构建直方图等。 ```java public static class StatisticMapper extends Mapper<LongWritable, Text, Text, LongWritable> {...} public static class StatisticReducer extends Reducer<Text, LongWritable, Text, LongWritable> {...} ``` 这些组件可以根据具体应用场景调整内部算法细节以适应不同的统计模型。

MapReduce编程实现单词统计

### 使用MapReduce编程实现单词统计 #### 项目配置 为了能够顺利开发并运行基于Hadoop的MapReduce应用,在项目的`pom.xml`文件中需引入必要的依赖项,这包括Hadoop客户端以及JUnit用于测试[^3]。 对于Maven管理的Java项目而言,具体的依赖声明如下所示: ```xml <dependencies> <!-- hadoop客户端 --> <dependency> <groupId>org.apache.hadoop</groupId> <artifactId>hadoop-client</artifactId> <version>3.3.4</version> </dependency> <!-- 单元测试框架 --> <dependency> <groupId>junit</groupId> <artifactId>junit</artifactId> <version>4.13.2</version> </dependency> </dependencies> ``` #### 编写Mapper类 在WordCount案例中的映射器负责解析输入文本行,并输出每一对键值组合,其中键为单个词语而值则固定设为整数1表示该词出现了一次。此过程通过继承自`Mapper<LongWritable, Text, Text, IntWritable>`抽象基类的新子类完成定义[^1]。 ```java public class TokenizerMapper extends Mapper<Object, Text, Text, IntWritable>{ private final static IntWritable one = new IntWritable(1); private Text word = new Text(); @Override protected void map(Object key, Text value, Context context) throws IOException, InterruptedException { String line = value.toString(); StringTokenizer itr = new StringTokenizer(line); while (itr.hasMoreTokens()) { word.set(itr.nextToken()); context.write(word, one); } } } ``` #### 编写Reducer类 归约者接收来自多个映射者的中间数据流作为输入参数;它按照相同的key聚合所有的value列表,之后计算这些数值之和得到最终的结果记录。这里采用的是累加操作来统计各个词条在整个文档集合里的总次数。 ```java public class IntSumReducer extends Reducer<Text,IntWritable,Text,IntWritable> { private IntWritable result = new IntWritable(); public void reduce(Text key, Iterable<IntWritable> values, Context context ) throws IOException, InterruptedException { int sum = 0; for (IntWritable val : values) { sum += val.get(); } result.set(sum); context.write(key, result); } } ``` #### 配置Job驱动程序 最后一步是在主函数内创建作业对象(Job),设置好源路径(InputPath)与目标存储位置(OutputPath),指定所使用的Mapper/Combiner/Reducer类型以及其他必要属性后即可调用`job.waitForCompletion(true)`方法触发整个流程执行[^2]。 ```java import org.apache.hadoop.conf.Configuration; import org.apache.hadoop.fs.Path; import org.apache.hadoop.io.IntWritable; import org.apache.hadoop.io.Text; import org.apache.hadoop.mapreduce.Job; import org.apache.hadoop.mapreduce.lib.input.FileInputFormat; import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat; public class WordCountDriver { public static void main(String[] args) throws Exception { Configuration conf = new Configuration(); Job job = Job.getInstance(conf, "word count"); job.setJarByClass(WordCountDriver.class); job.setMapperClass(TokenizerMapper.class); job.setCombinerClass(IntSumReducer.class); job.setReducerClass(IntSumReducer.class); job.setOutputKeyClass(Text.class); job.setOutputValueClass(IntWritable.class); FileInputFormat.addInputPath(job, new Path(args[0])); FileOutputFormat.setOutputPath(job, new Path(args[1])); System.exit(job.waitForCompletion(true) ? 0 : 1); } } ```
阅读全文

相关推荐

最新推荐

recommend-type

Hadoop学习文档笔记,基本原理 HDFS

在IT领域,Hadoop是一个广泛使用的开源框架,主要用于大数据处理和分析。它的核心组件包括Hadoop分布式文件系统(HDFS)和MapReduce计算模型。本文将深入探讨HDFS的基本原理和操作,以及如何通过Java API进行文件...
recommend-type

优秀的java应届生个人简历模板.pdf

【Java 应届生求职简历】是应届毕业生展示自己编程技能和项目经验的重要文档,它应当包含个人基本信息、教育背景、专业技能、项目经验和自我评价等关键内容。以下是对这份简历中涉及的Java相关知识点的详细说明: 1...
recommend-type

软件工程课程设计报告Hadoop配置

本次课程设计的题目涉及了Hadoop的核心组件,包括MapReduce编程模型、分布式文件系统HDFS、数据仓库工具Hive以及分布式数据库Hbase。设计任务要求学生运用软件工程的方法,从需求分析到编码测试,完整地开发一个基于...
recommend-type

基于CNN-GRU-Attention混合神经网络的负荷预测方法 附Python代码.rar

1.版本:matlab2014/2019a/2024a 2.附赠案例数据可直接运行matlab程序。 3.代码特点:参数化编程、参数可方便更改、代码编程思路清晰、注释明细。 4.适用对象:计算机,电子信息工程、数学等专业的大学生课程设计、期末大作业和毕业设计。
recommend-type

Windows下操作Linux图形界面的VNC工具

在信息技术领域,能够实现操作系统之间便捷的远程访问是非常重要的。尤其在实际工作中,当需要从Windows系统连接到远程的Linux服务器时,使用图形界面工具将极大地提高工作效率和便捷性。本文将详细介绍Windows连接Linux的图形界面工具的相关知识点。 首先,从标题可以看出,我们讨论的是一种能够让Windows用户通过图形界面访问Linux系统的方法。这里的图形界面工具是指能够让用户在Windows环境中,通过图形界面远程操控Linux服务器的软件。 描述部分重复强调了工具的用途,即在Windows平台上通过图形界面访问Linux系统的图形用户界面。这种方式使得用户无需直接操作Linux系统,即可完成管理任务。 标签部分提到了两个关键词:“Windows”和“连接”,以及“Linux的图形界面工具”,这进一步明确了我们讨论的是Windows环境下使用的远程连接Linux图形界面的工具。 在文件的名称列表中,我们看到了一个名为“vncview.exe”的文件。这是VNC Viewer的可执行文件,VNC(Virtual Network Computing)是一种远程显示系统,可以让用户通过网络控制另一台计算机的桌面。VNC Viewer是一个客户端软件,它允许用户连接到VNC服务器上,访问远程计算机的桌面环境。 VNC的工作原理如下: 1. 服务端设置:首先需要在Linux系统上安装并启动VNC服务器。VNC服务器监听特定端口,等待来自客户端的连接请求。在Linux系统上,常用的VNC服务器有VNC Server、Xvnc等。 2. 客户端连接:用户在Windows操作系统上使用VNC Viewer(如vncview.exe)来连接Linux系统上的VNC服务器。连接过程中,用户需要输入远程服务器的IP地址以及VNC服务器监听的端口号。 3. 认证过程:为了保证安全性,VNC在连接时可能会要求输入密码。密码是在Linux系统上设置VNC服务器时配置的,用于验证用户的身份。 4. 图形界面共享:一旦认证成功,VNC Viewer将显示远程Linux系统的桌面环境。用户可以通过VNC Viewer进行操作,如同操作本地计算机一样。 使用VNC连接Linux图形界面工具的好处包括: - 与Linux系统的图形用户界面进行交互,便于进行图形化操作。 - 方便的远程桌面管理,尤其适用于需要通过图形界面来安装软件、编辑配置文件、监控系统状态等场景。 - 跨平台操作,允许Windows用户在不离开他们熟悉的操作系统环境下访问Linux服务器。 除了VNC之外,还有一些其他的图形界面远程访问工具,例如: - RDP(Remote Desktop Protocol):通常与Windows远程桌面连接使用,但在Linux中也有相应的实现(如FreeRDP)。 - TeamViewer、AnyDesk等:这些工具提供了跨平台的远程桌面访问能力,虽然它们不是专为Linux设计,但它们都能很好地支持Linux系统。 在使用这些工具时,用户应该注意以下几点: - 安全性:确保使用强密码以及加密连接,防止未经授权的访问。 - 网络环境:需要保证网络的稳定性和带宽,以获得良好的远程桌面体验。 - 更新与维护:定期更新客户端和服务器端软件,确保安全性以及新功能的使用。 总结以上内容,Windows连接Linux图形界面的工具是实现跨平台远程管理的有效手段,特别是对于需要图形化操作的场景。VNC Viewer是一个应用广泛且成熟的工具,但选择适合自身需求的远程桌面工具对于提高工作效率与安全性至关重要。
recommend-type

【SketchUp Ruby API:从入门到精通】

# 摘要 本论文深入介绍了SketchUp Ruby API的使用与开发,为用户提供了一套从基础到进阶再到高级特性的完整学习路径。文章首先介绍了SketchUp Ruby API的基本概念、结构以及如何编写基础插件,并通过实例演示了3D模型的创建和编辑、用户界面定制等进阶应用。接着,探讨了高级特性,例如材质渲染、网络功能以及AP
recommend-type

VMware虚拟机打开虚拟网络编辑器出现由于找不到vnetlib.dll,无法继续执行代码。重新安装程序可能会解决问题

<think>好的,我需要帮助用户解决VMware虚拟机中缺少vnetlib.dll导致无法打开虚拟网络编辑器的问题。用户提到已经尝试过重新安装程序,但可能没有彻底卸载之前的残留文件。根据提供的引用资料,特别是引用[2]、[3]、[4]、[5],问题通常是由于VMware卸载不干净导致的。 首先,我应该列出彻底卸载VMware的步骤,包括关闭相关服务、使用卸载工具、清理注册表和文件残留,以及删除虚拟网卡。然后,建议重新安装最新版本的VMware。可能还需要提醒用户在安装后检查网络适配器设置,确保虚拟网卡正确安装。同时,用户可能需要手动恢复vnetlib.dll文件,但更安全的方法是通过官方安
recommend-type

基于Preact的高性能PWA实现定期天气信息更新

### 知识点详解 #### 1. React框架基础 React是由Facebook开发和维护的JavaScript库,专门用于构建用户界面。它是基于组件的,使得开发者能够创建大型的、动态的、数据驱动的Web应用。React的虚拟DOM(Virtual DOM)机制能够高效地更新和渲染界面,这是因为它仅对需要更新的部分进行操作,减少了与真实DOM的交互,从而提高了性能。 #### 2. Preact简介 Preact是一个与React功能相似的轻量级JavaScript库,它提供了React的核心功能,但体积更小,性能更高。Preact非常适合于需要快速加载和高效执行的场景,比如渐进式Web应用(Progressive Web Apps, PWA)。由于Preact的API与React非常接近,开发者可以在不牺牲太多现有React知识的情况下,享受到更轻量级的库带来的性能提升。 #### 3. 渐进式Web应用(PWA) PWA是一种设计理念,它通过一系列的Web技术使得Web应用能够提供类似原生应用的体验。PWA的特点包括离线能力、可安装性、即时加载、后台同步等。通过PWA,开发者能够为用户提供更快、更可靠、更互动的网页应用体验。PWA依赖于Service Workers、Manifest文件等技术来实现这些特性。 #### 4. Service Workers Service Workers是浏览器的一个额外的JavaScript线程,它可以拦截和处理网络请求,管理缓存,从而让Web应用可以离线工作。Service Workers运行在浏览器后台,不会影响Web页面的性能,为PWA的离线功能提供了技术基础。 #### 5. Web应用的Manifest文件 Manifest文件是PWA的核心组成部分之一,它是一个简单的JSON文件,为Web应用提供了名称、图标、启动画面、显示方式等配置信息。通过配置Manifest文件,可以定义PWA在用户设备上的安装方式以及应用的外观和行为。 #### 6. 天气信息数据获取 为了提供定期的天气信息,该应用需要接入一个天气信息API服务。开发者可以使用各种公共的或私有的天气API来获取实时天气数据。获取数据后,应用会解析这些数据并将其展示给用户。 #### 7. Web应用的性能优化 在开发过程中,性能优化是确保Web应用反应迅速和资源高效使用的关键环节。常见的优化技术包括但不限于减少HTTP请求、代码分割(code splitting)、懒加载(lazy loading)、优化渲染路径以及使用Preact这样的轻量级库。 #### 8. 压缩包子文件技术 “压缩包子文件”的命名暗示了该应用可能使用了某种形式的文件压缩技术。在Web开发中,这可能指将多个文件打包成一个或几个体积更小的文件,以便更快地加载。常用的工具有Webpack、Rollup等,这些工具可以将JavaScript、CSS、图片等资源进行压缩、合并和优化,从而减少网络请求,提升页面加载速度。 综上所述,本文件描述了一个基于Preact构建的高性能渐进式Web应用,它能够提供定期天气信息。该应用利用了Preact的轻量级特性和PWA技术,以实现快速响应和离线工作的能力。开发者需要了解React框架、Preact的优势、Service Workers、Manifest文件配置、天气数据获取和Web应用性能优化等关键知识点。通过这些技术,可以为用户提供一个加载速度快、交互流畅且具有离线功能的应用体验。
recommend-type

从停机到上线,EMC VNX5100控制器SP更换的实战演练

# 摘要 本文详细介绍了EMC VNX5100控制器的更换流程、故障诊断、停机保护、系统恢复以及长期监控与预防性维护策略。通过细致的准备工作、详尽的风险评估以及备份策略的制定,确保控制器更换过程的安全性与数据的完整性。文中还阐述了硬件故障诊断方法、系统停机计划的制定以及数据保护步骤。更换操作指南和系统重启初始化配置得到了详尽说明,以确保系统功能的正常恢复与性能优化。最后,文章强调了性能测试
recommend-type

ubuntu labelme中文版安装

### LabelMe 中文版在 Ubuntu 上的安装 对于希望在 Ubuntu 系统上安装 LabelMe 并使用其中文界面的用户来说,可以按照如下方式进行操作: #### 安装依赖库 为了确保 LabelMe 能够正常运行,在开始之前需确认已安装必要的 Python 库以及 PyQt5 和 Pillow。 如果尚未安装 `pyqt5` 可通过以下命令完成安装: ```bash sudo apt-get update && sudo apt-get install python3-pyqt5 ``` 同样地,如果没有安装 `Pillow` 图像处理库,则可以通过 pip 工具来安装