#生成随机的k个中心,请使用sample(k) def random_init(data, k): #data:数据集 k:聚类中心个数 #返回 k 个聚类中心并转换成array数组 #********** Begin **********# #********** End **********# #单个找寻聚类 def find_cluster(x, centroids): #x:待聚类点坐标 centroids:中心坐标 #********** Begin **********# distances = np.apply_along_axis(func1d=np.linalg.norm, axis= , arr= ) #********** End **********# return np.argmin(distances)
时间: 2023-07-18 15:51:49 浏览: 239
RandomData:随机数据生成器
这段代码中的 `random_init` 函数和 `find_cluster` 函数都是与 `KMeans` 聚类算法相关的。
`random_init` 函数的作用是从数据集中随机选择 k 个点作为聚类中心。具体实现方式是使用 `random.sample` 函数从数据集中随机选择 k 个点,并将这些点转换成 `numpy` 数组返回。
`find_cluster` 函数的作用是将一个待聚类的点分配到距离它最近的聚类中心所在的簇中。具体实现方式是先计算该点与每个聚类中心之间的距离,然后返回距离最近的聚类中心所在的簇的标号。其中,`np.apply_along_axis` 函数可以将一个函数应用到数组的某个维度上的所有元素,这里的函数是 `np.linalg.norm`,表示计算欧几里得距离。`axis` 参数指定应用函数的维度,这里是对第二个维度(即每个点的坐标)应用函数。`arr` 参数指定要应用函数的数组,这里是待聚类的点的坐标数组。
阅读全文