精细图像分割算法提取mask的白色图像边缘
时间: 2023-10-12 19:22:21 浏览: 181
对于需要进行精细图像分割的任务,可以使用语义分割算法,例如 U-Net,进行分割。
下面介绍如何使用 U-Net 进行精细的图像分割,提取 mask 的白色图像边缘。
1. 安装相关库
首先需要安装相关库,包括 tensorflow、keras、opencv 等。可以使用 pip 命令进行安装:
```
pip install tensorflow keras opencv-python
```
2. 加载模型并进行图像分割
接下来,可以使用以下代码加载 U-Net 模型,并对输入图像进行分割:
```python
import os
import cv2
import numpy as np
import tensorflow as tf
from tensorflow import keras
# Define the U-Net model
def unet(pretrained_weights=None, input_size=(256, 256, 1)):
inputs = keras.layers.Input(input_size)
# Downsample
conv1 = keras.layers.Conv2D(64, 3, activation='relu', padding='same', kernel_initializer='he_normal')(inputs)
conv1 = keras.layers.Conv2D(64, 3, activation='relu', padding='same', kernel_initializer='he_normal')(conv1)
pool1 = keras.layers.MaxPooling2D(pool_size=(2, 2))(conv1)
conv2 = keras.layers.Conv2D(128, 3, activation='relu', padding='same', kernel_initializer='he_normal')(pool1)
conv2 = keras.layers.Conv2D(128, 3, activation='relu', padding='same', kernel_initializer='he_normal')(conv2)
pool2 = keras.layers.MaxPooling2D(pool_size=(2, 2))(conv2)
conv3 = keras.layers.Conv2D(256, 3, activation='relu', padding='same', kernel_initializer='he_normal')(pool2)
conv3 = keras.layers.Conv2D(256, 3, activation='relu', padding='same', kernel_initializer='he_normal')(conv3)
pool3 = keras.layers.MaxPooling2D(pool_size=(2, 2))(conv3)
conv4 = keras.layers.Conv2D(512, 3, activation='relu', padding='same', kernel_initializer='he_normal')(pool3)
conv4 = keras.layers.Conv2D(512, 3, activation='relu', padding='same', kernel_initializer='he_normal')(conv4)
drop4 = keras.layers.Dropout(0.5)(conv4)
pool4 = keras.layers.MaxPooling2D(pool_size=(2, 2))(drop4)
# Upsample
conv5 = keras.layers.Conv2D(1024, 3, activation='relu', padding='same', kernel_initializer='he_normal')(pool4)
conv5 = keras.layers.Conv2D(1024, 3, activation='relu', padding='same', kernel_initializer='he_normal')(conv5)
drop5 = keras.layers.Dropout(0.5)(conv5)
up6 = keras.layers.Conv2DTranspose(512, 2, strides=(2, 2), padding='same')(drop5)
merge6 = keras.layers.concatenate([drop4, up6], axis=3)
conv6 = keras.layers.Conv2D(512, 3, activation='relu', padding='same', kernel_initializer='he_normal')(merge6)
conv6 = keras.layers.Conv2D(512, 3, activation='relu', padding='same', kernel_initializer='he_normal')(conv6)
up7 = keras.layers.Conv2DTranspose(256, 2, strides=(2, 2), padding='same')(conv6)
merge7 = keras.layers.concatenate([conv3, up7], axis=3)
conv7 = keras.layers.Conv2D(256, 3, activation='relu', padding='same', kernel_initializer='he_normal')(merge7)
conv7 = keras.layers.Conv2D(256, 3, activation='relu', padding='same', kernel_initializer='he_normal')(conv7)
up8 = keras.layers.Conv2DTranspose(128, 2, strides=(2, 2), padding='same')(conv7)
merge8 = keras.layers.concatenate([conv2, up8], axis=3)
conv8 = keras.layers.Conv2D(128, 3, activation='relu', padding='same', kernel_initializer='he_normal')(merge8)
conv8 = keras.layers.Conv2D(128, 3, activation='relu', padding='same', kernel_initializer='he_normal')(conv8)
up9 = keras.layers.Conv2DTranspose(64, 2, strides=(2, 2), padding='same')(conv8)
merge9 = keras.layers.concatenate([conv1, up9], axis=3)
conv9 = keras.layers.Conv2D(64, 3, activation='relu', padding='same', kernel_initializer='he_normal')(merge9)
conv9 = keras.layers.Conv2D(64, 3, activation='relu', padding='same', kernel_initializer='he_normal')(conv9)
conv9 = keras.layers.Conv2D(2, 3, activation='relu', padding='same', kernel_initializer='he_normal')(conv9)
outputs = keras.layers.Conv2D(1, 1, activation='sigmoid')(conv9)
model = keras.models.Model(inputs=inputs, outputs=outputs)
# Load the pretrained weights
if pretrained_weights:
model.load_weights(pretrained_weights)
return model
# Load the U-Net model
model = unet(pretrained_weights='unet_weights.h5')
# Load the input image
image = cv2.imread('input_image.png', cv2.IMREAD_GRAYSCALE)
image = cv2.resize(image, (256, 256))
# Normalize the image
image = image.astype('float32') / 255.0
# Reshape the image to a 4D tensor
image = np.reshape(image, (1, 256, 256, 1))
# Run the image through the model
mask = model.predict(image)
# Threshold the mask to get the edge
mask[mask >= 0.5] = 1
mask[mask < 0.5] = 0
mask = mask.astype('uint8')
# Find the contour of the mask
contours, hierarchy = cv2.findContours(mask[0], cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_NONE)
# Draw the contour on the original image
image = cv2.imread('input_image.png')
cv2.drawContours(image, contours, -1, (255, 255, 255), thickness=1)
# Show the result
cv2.imshow('result', image)
cv2.waitKey(0)
cv2.destroyAllWindows()
```
运行以上代码后,将生成一张带有mask的图像,并在其中标出了mask的边缘。如果需要更精细的分割效果,可以尝试调整模型的参数,或使用其他的图像分割算法。
阅读全文