bp神经网络回归relu激活函数
时间: 2023-07-07 21:35:33 浏览: 141
python实现BP神经网络回归预测模型.rar
下面是使用 ReLU 激活函数实现的 BP 神经网络回归的代码示例:
```python
import numpy as np
class NeuralNetwork:
def __init__(self, input_dim, hidden_dim, output_dim):
self.input_dim = input_dim
self.hidden_dim = hidden_dim
self.output_dim = output_dim
self.weights1 = np.random.randn(input_dim, hidden_dim)
self.bias1 = np.zeros((1, hidden_dim))
self.weights2 = np.random.randn(hidden_dim, output_dim)
self.bias2 = np.zeros((1, output_dim))
def relu(self, x):
return np.maximum(0, x)
def relu_derivative(self, x):
return np.where(x >= 0, 1, 0)
def forward(self, x):
self.z1 = np.dot(x, self.weights1) + self.bias1
self.a1 = self.relu(self.z1)
self.z2 = np.dot(self.a1, self.weights2) + self.bias2
self.y_hat = self.z2
def backward(self, x, y, learning_rate):
error = self.y_hat - y
delta2 = error
delta1 = np.dot(delta2, self.weights2.T) * self.relu_derivative(self.a1)
grad_weights2 = np.dot(self.a1.T, delta2)
grad_bias2 = np.sum(delta2, axis=0, keepdims=True)
grad_weights1 = np.dot(x.T, delta1)
grad_bias1 = np.sum(delta1, axis=0)
self.weights2 -= learning_rate * grad_weights2
self.bias2 -= learning_rate * grad_bias2
self.weights1 -= learning_rate * grad_weights1
self.bias1 -= learning_rate * grad_bias1
def train(self, X, y, epochs, learning_rate):
for i in range(epochs):
self.forward(X)
self.backward(X, y, learning_rate)
def predict(self, x):
self.forward(x)
return self.y_hat
```
在这个示例中,`NeuralNetwork` 类的构造函数接收输入层、隐藏层和输出层的维度作为参数,并且随机初始化了神经网络的参数。`relu` 方法实现了 ReLU 激活函数,`relu_derivative` 方法实现了 ReLU 激活函数的导数。
`forward` 方法实现了神经网络的前向传播过程,`backward` 方法实现了神经网络的反向传播过程。在反向传播过程中,使用 `self.relu_derivative` 方法计算了隐藏层的 delta 值,以便计算隐藏层到输入层之间的权重矩阵的梯度。最后,`train` 方法实现了神经网络的训练过程,`predict` 方法实现了神经网络的预测过程。
阅读全文