deeplabv3plus的Encoder模块代码
时间: 2024-05-09 12:18:47 浏览: 112
以下是deeplabv3plus的Encoder模块代码:
```python
class Encoder(nn.Module):
def __init__(self, in_channels, out_channels, output_stride=16):
super(Encoder, self).__init__()
if output_stride == 8:
stride_1, stride_2, stride_3 = 1, 2, 1
dilation_1, dilation_2, dilation_3 = 1, 1, 2
else:
stride_1, stride_2, stride_3 = 2, 2, 2
dilation_1, dilation_2, dilation_3 = 1, 1, 1
self.layer1 = nn.Sequential(
nn.Conv2d(in_channels, 32, kernel_size=3, stride=stride_1, padding=dilation_1, dilation=dilation_1, bias=False),
nn.BatchNorm2d(32),
nn.ReLU(inplace=True),
nn.Conv2d(32, 32, kernel_size=3, stride=1, padding=1, bias=False),
nn.BatchNorm2d(32),
nn.ReLU(inplace=True),
nn.Conv2d(32, 64, kernel_size=3, stride=1, padding=1, bias=False),
nn.BatchNorm2d(64),
nn.ReLU(inplace=True)
)
self.layer2 = nn.Sequential(
nn.Conv2d(64, 128, kernel_size=3, stride=stride_2, padding=dilation_2, dilation=dilation_2, bias=False),
nn.BatchNorm2d(128),
nn.ReLU(inplace=True),
nn.Conv2d(128, 128, kernel_size=3, stride=1, padding=1, bias=False),
nn.BatchNorm2d(128),
nn.ReLU(inplace=True),
nn.Conv2d(128, 128, kernel_size=3, stride=1, padding=1, bias=False),
nn.BatchNorm2d(128),
nn.ReLU(inplace=True)
)
self.layer3 = nn.Sequential(
nn.Conv2d(128, 256, kernel_size=3, stride=stride_3, padding=dilation_3, dilation=dilation_3, bias=False),
nn.BatchNorm2d(256),
nn.ReLU(inplace=True),
nn.Conv2d(256, 256, kernel_size=3, stride=1, padding=1, bias=False),
nn.BatchNorm2d(256),
nn.ReLU(inplace=True),
nn.Conv2d(256, 256, kernel_size=3, stride=1, padding=1, bias=False),
nn.BatchNorm2d(256),
nn.ReLU(inplace=True)
)
self.layer4 = nn.Sequential(
nn.Conv2d(256, 512, kernel_size=3, stride=1, padding=dilation_3, dilation=dilation_3, bias=False),
nn.BatchNorm2d(512),
nn.ReLU(inplace=True),
nn.Conv2d(512, 512, kernel_size=3, stride=1, padding=dilation_3, dilation=dilation_3, bias=False),
nn.BatchNorm2d(512),
nn.ReLU(inplace=True),
nn.Conv2d(512, 512, kernel_size=3, stride=1, padding=dilation_3, dilation=dilation_3, bias=False),
nn.BatchNorm2d(512),
nn.ReLU(inplace=True)
)
self.layer5 = nn.Sequential(
nn.Conv2d(512, 512, kernel_size=3, stride=1, padding=dilation_3, dilation=dilation_3, bias=False),
nn.BatchNorm2d(512),
nn.ReLU(inplace=True),
nn.Conv2d(512, 512, kernel_size=3, stride=1, padding=dilation_3, dilation=dilation_3, bias=False),
nn.BatchNorm2d(512),
nn.ReLU(inplace=True),
nn.Conv2d(512, out_channels, kernel_size=1, stride=1, bias=False)
)
def forward(self, x):
x = self.layer1(x)
x = self.layer2(x)
x = self.layer3(x)
x = self.layer4(x)
x = self.layer5(x)
return x
```
该模块包含5个卷积层,每个卷积层包含多个卷积、BN和ReLU操作。它的输入是`in_channels`通道的特征图,输出是`out_channels`通道的特征图。`output_stride`参数控制特征图的输出步幅。该模块可以将特征图降采样为1/8或1/16。
阅读全文