static void time_test(void) { char str[50]; struct tm tm; time_t t; time(&t); localtime_r(&t, &tm); strftime(str, sizeof(str), "%Y-%m-%d %H:%M:%S", &tm); printf("time()=%u (%s)\n", t, str); }

时间: 2024-04-04 11:33:21 浏览: 16
这段代码是一个时间测试函数,它用于获取当前系统时间并将其格式化输出。函数中使用了time()函数获取当前的时间戳,然后通过localtime_r()函数将时间戳转换为本地时间。接着使用strftime()函数将本地时间格式化为指定的字符串格式,并将其存储到str数组中。最后使用printf()函数将时间戳和格式化后的时间字符串输出到控制台。
相关问题

static void send_error(const ip_addr_t *addr, u16_t port, enum tftp_error code, const char *str) static void send_ack(u16_t blknum) static void resend_data(void) static void send_data(void) static void recv(void *arg, struct udp_pcb *upcb, struct pbuf *p, const ip_addr_t *addr, u16_t port) static void tftp_tmr(void* arg) err_t tftp_init(const struct tftp_context *ctx) 我的tftp_server.c 只有这些函数,怎么根据这些加上freertos实现并发处理的tftp服务器

首先,您需要使用FreeRTOS中的任务来实现并发处理。您可以创建一个任务来处理TFTP请求,然后在任务中使用您的现有函数来实现TFTP服务器。 例如,您可以创建一个名为tftp_task的任务,该任务将在启动时创建一个UDP套接字,并在循环中等待接收来自客户端的TFTP请求。在接收到请求后,该任务将启动一个新的任务来处理该请求,并等待下一个请求。 以下是一个示例代码框架: ``` // TFTP task void tftp_task(void *pvParameters) { struct udp_pcb *pcb; // create UDP socket pcb = udp_new(); // bind socket to port 69 udp_bind(pcb, IP_ADDR_ANY, 69); while(1) { struct pbuf *p; ip_addr_t addr; u16_t port; // wait for incoming packet p = udp_recv(pcb, recv, NULL); // get client address and port addr = *(ip_addr_t *)p->payload; port = *((u16_t *)p->payload + 2); // create new task to handle request xTaskCreate(tftp_request_task, "tftp_request_task", configMINIMAL_STACK_SIZE, (void *)&addr, tskIDLE_PRIORITY + 1, NULL); // free packet buffer pbuf_free(p); } } // TFTP request task void tftp_request_task(void *pvParameters) { ip_addr_t *addr = (ip_addr_t *)pvParameters; // handle TFTP request using existing functions // e.g. send_error(), send_ack(), send_data(), etc. // use mutex/semaphore to synchronize access to shared resources // e.g. file system, memory, etc. } // TFTP timer task void tftp_tmr_task(void *pvParameters) { while(1) { // handle TFTP timer events using existing tftp_tmr() function tftp_tmr(NULL); // delay for 100ms vTaskDelay(pdMS_TO_TICKS(100)); } } // TFTP server initialization err_t tftp_init(const struct tftp_context *ctx) { // create TFTP task xTaskCreate(tftp_task, "tftp_task", configMINIMAL_STACK_SIZE, NULL, tskIDLE_PRIORITY + 1, NULL); // create TFTP timer task xTaskCreate(tftp_tmr_task, "tftp_tmr_task", configMINIMAL_STACK_SIZE, NULL, tskIDLE_PRIORITY + 2, NULL); return ERR_OK; } ``` 请注意,上述代码框架仅供参考,您需要根据自己的实际情况进行调整和修改。 在处理TFTP请求时,请确保使用互斥锁或信号量来同步访问共享资源,例如文件系统或内存。这可以防止多个任务同时访问同一资源而导致数据损坏或不一致。 同时,请注意在处理TFTP请求时要处理错误情况,例如超时、丢失的数据包、非法请求等。这可以通过调用send_error()函数来实现。

python如何更改time.struct_time中tm_year

可以使用Python中的time模块来更改time.struct_time中的tm_year,具体方法如下: 首先,将time.struct_time转换为时间戳,可以使用time.mktime()函数,其返回值为浮点数表示时间戳。 然后,将时间戳转换为time.struct_time,可以使用time.localtime()函数,其返回值为time.struct_time类型。 在转换为time.struct_time类型后,可以通过修改其中的tm_year属性来更改年份。 最后,再将修改后的time.struct_time类型转换为时间戳或字符串等其他格式。 以下是一个示例代码: ```python import time # 创建一个time.struct_time对象 struct_time = time.localtime() # 将time.struct_time转换为时间戳 timestamp = time.mktime(struct_time) # 修改年份 struct_time = struct_time._replace(tm_year=2022) # 将修改后的time.struct_time转换为时间戳 timestamp = time.mktime(struct_time) # 将修改后的time.struct_time转换为字符串 str_time = time.strftime('%Y-%m-%d %H:%M:%S', struct_time) print(timestamp) print(str_time) ``` 在上面的示例代码中,我们将struct_time的年份修改为2022,并将其转换为时间戳和字符串格式输出。

相关推荐

注释以下代码#define TP_PRIO configMAX_PRIORITIES - 5 static void ble_tp_connected(struct bt_conn *conn, u8_t err); static void ble_tp_disconnected(struct bt_conn *conn, u8_t reason); static int bl_tp_send_indicate(struct bt_conn *conn, const struct bt_gatt_attr *attr, const void *data, u16_t len); struct bt_conn *ble_tp_conn; struct bt_gatt_exchange_params exchg_mtu; TaskHandle_t ble_tp_task_h; int tx_mtu_size = 20; u8_t tp_start = 0; static u8_t created_tp_task = 0; static u8_t isRegister = 0; static struct bt_conn_cb ble_tp_conn_callbacks = { .connected = ble_tp_connected, .disconnected = ble_tp_disconnected, }; static void ble_tp_tx_mtu_size(struct bt_conn *conn, u8_t err, struct bt_gatt_exchange_params *params) { if(!err) { tx_mtu_size = bt_gatt_get_mtu(ble_tp_conn); BT_WARN("ble tp echange mtu size success, mtu size: %d", tx_mtu_size); } else { BT_WARN("ble tp echange mtu size failure, err: %d", err); } } static void ble_tp_connected(struct bt_conn *conn, u8_t err) { if(err || conn->type != BT_CONN_TYPE_LE) { return; } int tx_octets = 0x00fb; int tx_time = 0x0848; int ret = -1; BT_INFO("%s",__func__); ble_tp_conn = conn; . ret = bt_le_set_data_len(ble_tp_conn, tx_octets, tx_time); if(!ret) { BT_WARN("ble tp set data length success."); } else { BT_WARN("ble tp set data length failure, err: %d\n", ret); } exchg_mtu.func = ble_tp_tx_mtu_size; ret = bt_gatt_exchange_mtu(ble_tp_conn, &exchg_mtu); if (!ret) { BT_WARN("ble tp exchange mtu size pending."); } else { BT_WARN("ble tp exchange mtu size failure, err: %d", ret); } } static void ble_tp_disconnected(struct bt_conn *conn, u8_t reason) { if(conn->type != BT_CONN_TYPE_LE) { return; } BT_INFO("%s",__func__); ble_tp_conn = NULL; } static int ble_tp_recv_rd(struct bt_conn *conn, const struct bt_gatt_attr *attr, void *buf, u16_t len, u16_t offset) { int size = 9; char data[9] = {0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09}; memcpy(buf, data, size); return size; }

最新推荐

recommend-type

time_t tm timeval 和 时间字符串的转换方法

下面小编就为大家带来一篇time_t tm timeval 和 时间字符串的转换方法。小编觉得挺不错的,现在就分享给大家,也给大家做个参考。一起跟随小编过来看看吧
recommend-type

####这是一篇对python的详细解析

python
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

MATLAB柱状图在信号处理中的应用:可视化信号特征和频谱分析

![matlab画柱状图](https://img-blog.csdnimg.cn/3f32348f1c9c4481a6f5931993732f97.png) # 1. MATLAB柱状图概述** MATLAB柱状图是一种图形化工具,用于可视化数据中不同类别或组的分布情况。它通过绘制垂直条形来表示每个类别或组中的数据值。柱状图在信号处理中广泛用于可视化信号特征和进行频谱分析。 柱状图的优点在于其简单易懂,能够直观地展示数据分布。在信号处理中,柱状图可以帮助工程师识别信号中的模式、趋势和异常情况,从而为信号分析和处理提供有价值的见解。 # 2. 柱状图在信号处理中的应用 柱状图在信号处理
recommend-type

用Spring boot和vue写一个登录注册界面

好的,这是一个比较常见的技术问题,我可以为您提供一些参考资料和思路。首先,您可以使用Spring Boot作为后端框架来处理用户认证和注册的逻辑,比如使用Spring Security实现用户登录认证。同时,您还需要设计相应的数据模型和数据库表结构来存储用户信息。在前端方面,您可以使用Vue.js作为框架来构建登录注册页面,使用Axios来发起API请求并和后端进行交互。当然,在实现过程中,还需要考虑一些具体细节,比如数据校验、安全性和用户体验等方面。希望这些信息能够帮助到您。
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

MATLAB柱状图在数据分析中的作用:从可视化到洞察

![MATLAB柱状图在数据分析中的作用:从可视化到洞察](https://img-blog.csdnimg.cn/img_convert/1a36558cefc0339f7836cca7680c0aef.png) # 1. MATLAB柱状图概述** 柱状图是一种广泛用于数据可视化的图表类型,它使用垂直条形来表示数据中不同类别或组别的值。在MATLAB中,柱状图通过`bar`函数创建,该函数接受数据向量或矩阵作为输入,并生成相应的高度条形。 柱状图的优点在于其简单性和易于理解性。它们可以快速有效地传达数据分布和组别之间的比较。此外,MATLAB提供了广泛的定制选项,允许用户调整条形颜色、
recommend-type

命名ACL和拓展ACL标准ACL的具体区别

命名ACL和标准ACL的主要区别在于匹配条件和作用范围。命名ACL可以基于协议、端口和其他条件进行匹配,并可以应用到接口、VLAN和其他范围。而标准ACL只能基于源地址进行匹配,并只能应用到接口。拓展ACL则可以基于源地址、目的地址、协议、端口和其他条件进行匹配,并可以应用到接口、VLAN和其他范围。