while (p) { if (p == nullptr) { // 如果 p 是空指针,则跳出循环 break; } cout << "新闻标题:" << p->data.name << "新闻号:" << p->data.num << " 新闻内容:" << p->data.n << endl; p = p->next; },不会跳出循环到底是怎么回事,明明指针已经为空指针了,这个链表的数据结构定义为typedef struct node { struct news data; //数据域 struct node* next; //指针域 }Node, * Link;

时间: 2024-02-26 12:54:05 浏览: 19
这段代码中的 `while` 循环中,先判断 `p` 是否为空指针,如果是,则执行 `break` 跳出循环。因此,如果循环没有跳出,说明 `p` 不是空指针。 可能出现这种情况的原因是,程序在遍历链表时,指针 `p` 没有被正确地赋值为下一个节点的指针。这可能是由于链表的指针操作有误导致的。 建议您检查链表的指针操作是否正确,可以在循环体内加入打印语句来进行调试,查看每次循环中 `p` 的值和链表的结构是否符合预期。可以检查链表的结构是否合法,节点的指针是否正确连接等方面的问题。
相关问题

while (p) { if (p == nullptr) { // 如果 p 是空指针,则跳出循环 break; } cout << "新闻标题:" << p->data.name << "新闻号:" << p->data.num << " 新闻内容:" << p->data.n << endl; p = p->next; },不会跳出循环到底是怎么回事,明明指针已经为空指针了

这段代码中的 `while` 循环在每次迭代时会首先检查 `p` 是否为 `nullptr`,如果是,则执行 `break` 语句退出循环。因此,如果该循环没有被跳出,那么说明 `p` 不是空指针,而是指向链表中某个节点的指针。 如果您的程序中出现了无限循环的情况,可能是由于链表中存在环路或者指针操作有误导致的。您可以检查链表的数据结构是否正确,以及代码中对指针的操作是否正确,找到问题所在并进行修正。

while (p) { if (p == nullptr) { break; } cout << "新闻标题:" << p->data.name << "新闻号:" << p->data.num << " 新闻内容:" << p->data.n << endl; p = p->next; }这段代码有BUG,有什么办法可以让其不使用p==nullptr判定指针是否为空指针也能让其遍历链表每个指针,然后还能跳出循环

可以使用一个标记变量来辅助遍历和跳出循环。具体做法如下: ``` bool flag = true; // 标记变量初始化为true while (flag && p) { // 同时判定标记变量和指针是否为空指针 cout << "新闻标题:" << p->data.name << "新闻号:" << p->data.num << " 新闻内容:" << p->data.n << endl; p = p->next; // 在遍历过程中根据需要修改标记变量 if (/* 满足某个条件 */) { flag = false; // 设置标记变量为false,跳出循环 } } ``` 这样,当遍历到链表末尾或者满足某个条件时,标记变量会被设置为false,从而跳出循环。这种方法可以避免使用p==nullptr判定指针是否为空指针,同时也能遍历链表每个指针。

相关推荐

for (const auto& task : tasks) { //std::cout << "Task name: " << task.id << ", Completed: " << task.completed << ", Priority: " << task.priority << std::endl; } // 遍历任务列表,分配任务给可用的小车 for (auto& task : tasks) { if (task.completed == 0) { // 只分配未完成的任务 AGV* closest_agv = nullptr; int wait_time = 0; // 等待时间计数器 // 初始化为 nullptr while (closest_agv == nullptr && wait_time < 3) { // 最多等待 1 秒钟 // 查找可用的小车 for (auto& agv : agvs) { if (agv.getState()) { closest_agv = &agv; break; } } if (closest_agv == nullptr) { // 没有可用的小车,等待一段时间再查找 std::this_thread::sleep_for(std::chrono::seconds(1)); wait_time++; } } if (closest_agv != nullptr) { // 找到可用小车 // 找到最近的可用小车 int min_distance = INT_MAX; for (auto& agv : agvs) { if (agv.getState()) { int distance = abs(agv.getCurrentX()- task.start_x) + abs(agv.getCurrentY() - task.start_y); if (distance < min_distance) { min_distance = distance; closest_agv = &agv; } } } // 将任务分配给 AGV 对象的起点和终点坐标 closest_agv->setStartCoord(task.start_x, task.start_y); closest_agv->setEndCoord(task.end_x, task.end_y); closest_agv->setState(false); // 小车被占用 task.completed = 1; // 任务状态修改为进行中 std::cout << "agv_id" << closest_agv->getid() << "————" << "task_id"<<task.id << endl; } else { std::cout << "task_id-" << task.id << "No available AGV!" << endl; } } },修改爲黨沒有可用小車的時候直接退出

void AGVScheduler::assign_task_to_agv(std::vector<Task>& tasks, std::vector<AGV>& agvs) { // 首先按照任务的完成状态、优先级进行排序 std::sort(tasks.begin(), tasks.end(), [](const Task& task_1, const Task& task_2) { if (task_1.completed != task_2.completed) { return !task_1.completed; } else { return task_1.priority < task_2.priority; } }); for (const auto& task : tasks) { std::cout << "Task name: " << task.id << ", Completed: " << task.completed << ", Priority: " << task.priority << std::endl; } // 遍历任务列表,分配任务给可用的小车 for (auto& task : tasks) { if (!task.completed) { AGV* closest_agv = nullptr; // 初始化为 nullptr while (closest_agv == nullptr) { // 查找可用的小车 for (auto& agv : agvs) { if (agv.getState()) { closest_agv = &agv; break; } } if (closest_agv == nullptr) { // 没有可用的小车,等待一段时间再查找 std::this_thread::sleep_for(std::chrono::seconds(1)); } } // 找到最近的可用小车 int min_distance = INT_MAX; for (auto& agv : agvs) { if (agv.getState()) { int distance = abs(agv.getCurrentX()- task.start_x) + abs(agv.getCurrentY() - task.start_y); if (distance < min_distance) { min_distance = distance; closest_agv = &agv; } } } // 将任务分配给 AGV 对象的起点和终点坐标 closest_agv->setStartCoord(task.start_x, task.start_y); closest_agv->setEndCoord(task.end_x, task.end_y); closest_agv->setState(false); task.completed = true; std::cout << closest_agv->getid() << "," << task.id << endl; } } },當沒有小車用的時候就卡死,添加代碼,找到可用小車的開始運行,沒找到可用小車的一直等待,直到有可用小車

void AGVScheduler::assign_task_to_agv(std::vector<Task>& tasks, std::vector<AGV>& agvs) { // 首先按照任务的完成状态、优先级进行排序 std::sort(tasks.begin(), tasks.end(), [](const Task& task_1, const Task& task_2) { if (task_1.completed != task_2.completed) { return task_1.completed < task_2.completed; // 未完成的任务排在已完成的任务前面 } else { return task_1.priority < task_2.priority; // 同一完成状态下,按照优先级排序 } }); for (const auto& task : tasks) { //std::cout << "Task name: " << task.id << ", Completed: " << task.completed << ", Priority: " << task.priority << std::endl; } // 遍历任务列表,分配任务给可用的小车 for (auto& task : tasks) { if (task.completed == 0) { // 只分配未完成的任务 AGV* closest_agv = nullptr; int wait_time = 0; // 等待时间计数器 // 初始化为 nullptr while (closest_agv == nullptr && wait_time < 1) { // 最多等待 1 秒钟 // 查找可用的小车 for (auto& agv : agvs) { if (agv.getState()) { closest_agv = &agv; break; } } if (closest_agv == nullptr) { // 没有可用的小车,等待一段时间再查找 std::this_thread::sleep_for(std::chrono::seconds(1)); wait_time++; } } if (closest_agv != nullptr) { // 找到可用小车 // 找到最近的可用小车 int min_distance = INT_MAX; for (auto& agv : agvs) { if (agv.getState()) { int distance = abs(agv.getCurrentX()- task.start_x) + abs(agv.getCurrentY() - task.start_y); if (distance < min_distance) { min_distance = distance; closest_agv = &agv; } } } // 将任务分配给 AGV 对象的起点和终点坐标 closest_agv->set_task_id(task.id); closest_agv->setStartCoord(task.start_x, task.start_y); closest_agv->setEndCoord(task.end_x, task.end_y); closest_agv->setState(false); // 小车被占用 task.completed = 1; // 任务状态修改为进行中 std::cout << "agv_id" << closest_agv->getid() << "————" << "task_id"<<task.id << "task_completed"<< task.completed << endl; } else { std::cout << "task_id-" << task.id << "No available AGV!" << "task_completed"<< task.completed <<endl; } } },修改代碼為在最後輸出所有task的agvid,taskid和task的completed

#include<iostream> #include<queue> #include<vector> using namespace std; // 定义图的邻接表结构 struct edge { int dest; edge* next; }; struct vertex { edge* head; }; // 图类 class Graph { private: int V; // 顶点数 vertex* adj; // 邻接表 public: Graph(int V) { this->V = V; adj = new vertex[V]; for (int i = 0; i < V; ++i) { adj[i].head = nullptr; } } // 添加边 void addEdge(int src, int dest) { edge* e = new edge; e->dest = dest; e->next = adj[src].head; adj[src].head = e; } // 深度优先遍历 void DFS(int v, bool* visited) { visited[v] = true; cout << v << " "; edge* e = adj[v].head; while (e != nullptr) { if (!visited[e->dest]) { DFS(e->dest, visited); } e = e->next; } } // 广度优先遍历 void BFS(int v, bool* visited) { queue<int> q; visited[v] = true; q.push(v); while (!q.empty()) { int u = q.front(); q.pop(); cout << u << " "; edge* e = adj[u].head; while (e != nullptr) { if (!visited[e->dest]) { visited[e->dest] = true; q.push(e->dest); } e = e->next; } } } }; int main() { int V, E; cout << "请输入顶点数和边数:" << endl; cin >> V >> E; Graph g(V); cout << "请输入每条边的起点和终点:" << endl; for (int i = 0; i < E; ++i) { int src, dest; cin >> src >> dest; g.addEdge(src, dest); } // 深度优先遍历 cout << "深度优先遍历结果为:" << endl; bool* visited = new bool[V]; for (int i = 0; i < V; ++i) { visited[i] = false; } for (int i = 0; i < V; ++i) { if (!visited[i]) { g.DFS(i, visited); } } cout << endl; // 广度优先遍历 cout << "广度优先遍历结果为:" << endl; for (int i = 0; i < V; ++i) { visited[i] = false; } for (int i = 0; i < V; ++i) { if (!visited[i]) { g.BFS(i, visited); } } cout << endl; return 0; }这段代码从输入数字修改为输入为字母

最新推荐

recommend-type

k8s1.16的jenkins部署java项目cicd(cd手动)-kubernetes安装包和详细文档笔记整理

k8s1.16的jenkins部署java项目cicd(cd手动)-kubernetes安装包和详细文档笔记整理
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

MATLAB柱状图在信号处理中的应用:可视化信号特征和频谱分析

![matlab画柱状图](https://img-blog.csdnimg.cn/3f32348f1c9c4481a6f5931993732f97.png) # 1. MATLAB柱状图概述** MATLAB柱状图是一种图形化工具,用于可视化数据中不同类别或组的分布情况。它通过绘制垂直条形来表示每个类别或组中的数据值。柱状图在信号处理中广泛用于可视化信号特征和进行频谱分析。 柱状图的优点在于其简单易懂,能够直观地展示数据分布。在信号处理中,柱状图可以帮助工程师识别信号中的模式、趋势和异常情况,从而为信号分析和处理提供有价值的见解。 # 2. 柱状图在信号处理中的应用 柱状图在信号处理
recommend-type

用Spring boot和vue写一个登录注册界面

好的,这是一个比较常见的技术问题,我可以为您提供一些参考资料和思路。首先,您可以使用Spring Boot作为后端框架来处理用户认证和注册的逻辑,比如使用Spring Security实现用户登录认证。同时,您还需要设计相应的数据模型和数据库表结构来存储用户信息。在前端方面,您可以使用Vue.js作为框架来构建登录注册页面,使用Axios来发起API请求并和后端进行交互。当然,在实现过程中,还需要考虑一些具体细节,比如数据校验、安全性和用户体验等方面。希望这些信息能够帮助到您。
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

MATLAB柱状图在数据分析中的作用:从可视化到洞察

![MATLAB柱状图在数据分析中的作用:从可视化到洞察](https://img-blog.csdnimg.cn/img_convert/1a36558cefc0339f7836cca7680c0aef.png) # 1. MATLAB柱状图概述** 柱状图是一种广泛用于数据可视化的图表类型,它使用垂直条形来表示数据中不同类别或组别的值。在MATLAB中,柱状图通过`bar`函数创建,该函数接受数据向量或矩阵作为输入,并生成相应的高度条形。 柱状图的优点在于其简单性和易于理解性。它们可以快速有效地传达数据分布和组别之间的比较。此外,MATLAB提供了广泛的定制选项,允许用户调整条形颜色、
recommend-type

命名ACL和拓展ACL标准ACL的具体区别

命名ACL和标准ACL的主要区别在于匹配条件和作用范围。命名ACL可以基于协议、端口和其他条件进行匹配,并可以应用到接口、VLAN和其他范围。而标准ACL只能基于源地址进行匹配,并只能应用到接口。拓展ACL则可以基于源地址、目的地址、协议、端口和其他条件进行匹配,并可以应用到接口、VLAN和其他范围。
recommend-type

c++校园超市商品信息管理系统课程设计说明书(含源代码) (2).pdf

校园超市商品信息管理系统课程设计旨在帮助学生深入理解程序设计的基础知识,同时锻炼他们的实际操作能力。通过设计和实现一个校园超市商品信息管理系统,学生掌握了如何利用计算机科学与技术知识解决实际问题的能力。在课程设计过程中,学生需要对超市商品和销售员的关系进行有效管理,使系统功能更全面、实用,从而提高用户体验和便利性。 学生在课程设计过程中展现了积极的学习态度和纪律,没有缺勤情况,演示过程流畅且作品具有很强的使用价值。设计报告完整详细,展现了对问题的深入思考和解决能力。在答辩环节中,学生能够自信地回答问题,展示出扎实的专业知识和逻辑思维能力。教师对学生的表现予以肯定,认为学生在课程设计中表现出色,值得称赞。 整个课程设计过程包括平时成绩、报告成绩和演示与答辩成绩三个部分,其中平时表现占比20%,报告成绩占比40%,演示与答辩成绩占比40%。通过这三个部分的综合评定,最终为学生总成绩提供参考。总评分以百分制计算,全面评估学生在课程设计中的各项表现,最终为学生提供综合评价和反馈意见。 通过校园超市商品信息管理系统课程设计,学生不仅提升了对程序设计基础知识的理解与应用能力,同时也增强了团队协作和沟通能力。这一过程旨在培养学生综合运用技术解决问题的能力,为其未来的专业发展打下坚实基础。学生在进行校园超市商品信息管理系统课程设计过程中,不仅获得了理论知识的提升,同时也锻炼了实践能力和创新思维,为其未来的职业发展奠定了坚实基础。 校园超市商品信息管理系统课程设计的目的在于促进学生对程序设计基础知识的深入理解与掌握,同时培养学生解决实际问题的能力。通过对系统功能和用户需求的全面考量,学生设计了一个实用、高效的校园超市商品信息管理系统,为用户提供了更便捷、更高效的管理和使用体验。 综上所述,校园超市商品信息管理系统课程设计是一项旨在提升学生综合能力和实践技能的重要教学活动。通过此次设计,学生不仅深化了对程序设计基础知识的理解,还培养了解决实际问题的能力和团队合作精神。这一过程将为学生未来的专业发展提供坚实基础,使其在实际工作中能够胜任更多挑战。